1
|
Celorrio San Miguel AM, Roche E, Herranz-López M, Celorrio San Miguel M, Mielgo-Ayuso J, Fernández-Lázaro D. Impact of Melatonin Supplementation on Sports Performance and Circulating Biomarkers in Highly Trained Athletes: A Systematic Review of Randomized Controlled Trials. Nutrients 2024; 16:1011. [PMID: 38613044 PMCID: PMC11013451 DOI: 10.3390/nu16071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Melatonin (N-acetyl-5 methoxytryptamine) is an indolic neurohormone that modulates a variety of physiological functions due to its antioxidant, anti-inflammatory, and immunoregulatory properties. Therefore, the purpose of this study was to critically review the effects of melatonin supplementation in sports performance and circulating biomarkers related to the health status of highly trained athletes. Data were obtained by performing searches in the following three bibliography databases: Web of Science, PubMed, and Scopus. The terms used were "Highly Trained Athletes", "Melatonin", and "Sports Performance", "Health Biomarkers" using "Humans" as a filter. The search update was carried out in February 2024 from original articles published with a controlled trial design. The PRISMA rules, the modified McMaster critical review form for quantitative studies, the PEDro scale, and the Cochrane risk of bias were applied. According to the inclusion and exclusion criteria, 21 articles were selected out of 294 references. The dose of melatonin supplemented in the trials ranged between 5 mg to 100 mg administered before or after exercise. The outcomes showed improvements in antioxidant status and inflammatory response and reversed liver damage and muscle damage. Moderate effects on modulating glycemia, total cholesterol, triglycerides, and creatinine were reported. Promising data were found regarding the potential benefits of melatonin in hematological biomarkers, hormonal responses, and sports performance. Therefore, the true efficiency of melatonin to directly improve sports performance remains to be assessed. Nevertheless, an indirect effect of melatonin supplementation in sports performance could be evaluated through improvements in health biomarkers.
Collapse
Affiliation(s)
- Ana M. Celorrio San Miguel
- Department of Chemistry, Polytechnic Secondary Education High School, 42004 Soria, Spain;
- Doctoral School, University of León, Campus de Vegazana, 24071 Leon, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernandez, 03202 Elche, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain;
| | - María Herranz-López
- Institute of Research, Development, and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain;
| | - Marta Celorrio San Miguel
- Emergency Department, Línea de la Concepción Hospital, C. Gabriel Miró, 108, 11300 La Línea de la Concepción, Spain;
| | - Juan Mielgo-Ayuso
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain;
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Diego Fernández-Lázaro
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain;
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
2
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
3
|
The interplay of pineal hormones and socioeconomic status leading to colorectal cancer disparity. Transl Oncol 2022; 16:101330. [PMID: 34990909 PMCID: PMC8741600 DOI: 10.1016/j.tranon.2021.101330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite increased screening options and state-of-art treatments offered in clinics, racial differences remain in CRC. African Americans (AAs) are disproportionately affected by the disease; the incidence and mortality are higher in AAs than Caucasian Americans (CAs). At the time of diagnosis, AAs more often present with advanced stages and aggressive CRCs, primarily accounting for the racial differences in therapeutic outcomes and mortality. The early incidence of CRC in AAs could be attributed to race-specific gene polymorphisms and lifestyle choices associated with socioeconomic status (SES). Altered melatonin-serotonin signaling, besides the established CRC risk factors (age, diet, obesity, alcoholism, and tobacco use), steered by SES, glucocorticoid, and Vitamin D status in AAs could also account for the early incidence in this racial group. This review focuses on how the lifestyle factors, diet, allelic variants, and altered expression of specific genes could lead to atypical serotonin and melatonin signaling by modulating the synthesis, secretion, and signaling of these pineal hormones in AAs and predisposing them to develop more aggressive CRC earlier than CAs. Crosstalk between gut microbiota and pineal hormones and its impact on CRC pathobiology is addressed from a race-specific perspective. Lastly, the status of melatonin-focused CRC treatments, the need to better understand the perturbed melatonin signaling, and the potential of pineal hormone-directed therapeutic interventions to reduce CRC-associated disparity are discussed.
Collapse
|
4
|
Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166281. [PMID: 34610472 DOI: 10.1016/j.bbadis.2021.166281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
Collapse
|
5
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
6
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The role of melatonin in colorectal cancer treatment: a comprehensive review. Ther Adv Med Oncol 2020; 12:1758835920931714. [PMID: 32733605 PMCID: PMC7370547 DOI: 10.1177/1758835920931714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer worldwide, known as the second leading cause of cancer-related deaths annually. Currently, multimodal treatment strategies, including surgical resection, combined with chemotherapy and radiotherapy, have been used as conventional treatments in patients with CRC. However, clinical outcome of advanced stage disease remains relatively discouraging, due mainly to appearance of CRC chemoresistance, toxicity, and other detrimental side effects. New strategies to overcome these limitations are essential. During the last decades, melatonin (MLT) has been shown to be a potent antiproliferative, anti-metastatic agent with cytotoxic effects on different types of human malignancies, including CRC. Hence, this comprehensive review compiles the available experimental and clinical data analyzing the effects of MLT treatment in CRC patients and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Transplant Center Graz, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Barni S, Lissoni P, Paolorossi F, Crispino S, Archili C, Tancini G. A Study of the Pineal Hormone Melatonin as a Second Line Therapy in Metastatic Colorectal Cancer Resistant to Fluorouracil plus Folates. TUMORI JOURNAL 2018; 76:58-60. [PMID: 2321275 DOI: 10.1177/030089169007600115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since there is no effective second line chemotherapy in colorectal cancer resistant to fluorouracil, this study was carried out to evaluate the therapeutic activity of the pineal hormone melatonin, which has appeared to have antineoplastic activity in some experimental conditions, in patients with metastatic colorectal carcinoma who did not respond to fluorouracil. The study included 14 patients (8 men, 6 women; mean age 58 years). Melatonin was given intramuscularly at a daily dose of 20 mg at 3.00 p.m. for 2 months; after that, melatonin therapy was continued at 10 mg/day orally in responder patients, in those with stable disease and/or an evident improvement in PS. One patient had a minor response; 3 other patients had a stable disease, wehereas the other 10 cases progressed. An evident improvement in PS was seen in 5/14 (36 %) patients. These preliminary results show that melatonin does not have important antitumor activity in metastatic colorectal cancer patients resistant to fluorouracil. However, the pineal hormone could be usefully employed as supportive care to improve the quality of life in these patients for whom no standard treatment is yet available.
Collapse
Affiliation(s)
- S Barni
- Divisione di Radioterapia Oncologica, Ospedale San Gerardo, Monza, Milano
| | | | | | | | | | | |
Collapse
|
8
|
Melatonin Inhibits Reactive Oxygen Species-Driven Proliferation, Epithelial-Mesenchymal Transition, and Vasculogenic Mimicry in Oral Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3510970. [PMID: 29725496 PMCID: PMC5884151 DOI: 10.1155/2018/3510970] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Globally, oral cancer is the most common type of head and neck cancers. Melatonin elicits inhibitory effects on oral cancer; however, the biological function of melatonin and underlying mechanisms remain largely unknown. In this study, we found that melatonin impaired the proliferation and apoptosis resistance of oral cancer cells by inactivating ROS-dependent Akt signaling, involving in downregulation of cyclin D1, PCNA, and Bcl-2 and upregulation of Bax. Melatonin inhibited the migration and invasion of oral cancer cells by repressing ROS-activated Akt signaling, implicating with the reduction of Snail and Vimentin and the enhancement of E-cadherin. Moreover, melatonin hampered vasculogenic mimicry of oral cancer cells through blockage of ROS-activated extracellular-regulated protein kinases (ERKs) and Akt pathways involving the hypoxia-inducible factor 1α. Consistently, melatonin retarded tumorigenesis of oral cancer in vivo. Overall, these findings indicated that melatonin exerts antisurvival, antimotility, and antiangiogenesis effects on oral cancer partly by suppressing ROS-reliant Akt or ERK signaling.
Collapse
|
9
|
Martínez-Campa C, Menéndez-Menéndez J, Alonso-González C, González A, Álvarez-García V, Cos S. What is known about melatonin, chemotherapy and altered gene expression in breast cancer. Oncol Lett 2017; 13:2003-2014. [PMID: 28454355 PMCID: PMC5403278 DOI: 10.3892/ol.2017.5712] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Melatonin, synthesized in and released from the pineal gland, has been demonstrated by multiple in vivo and in vitro studies to have an oncostatic role in hormone-dependent tumors. Furthermore, several clinical trials point to melatonin as a promising adjuvant molecule to be considered for cancer treatment. In the past few years, evidence of a broader spectrum of action of melatonin as an antitumor agent has arisen; thus, melatonin appears to also have therapeutic effects in several types of hormone-independent cancer, including ovarian, leukemic, pancreatic, gastric and non-small cell lung carcinoma. In the present study, the latest findings regarding melatonin molecular actions when concomitantly administered with either radiotherapy or chemotherapy in cancer were reviewed, with a particular focus on hormone-dependent breast cancer. Finally, the present study discusses which direction should be followed in the next years to definitely clarify whether or not melatonin administration could protect against non-desirable effects (such as altered gene expression and post-translational protein modifications) caused by chemotherapy or radiotherapy treatments. As treatments move towards personalized medicine, comparative gene expression profiling with and without melatonin may be a powerful tool to better understand the antitumor effects of melatonin, the pineal gland hormone.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
- Correspondence to: Dr Carlos Martínez-Campa, Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, Av. Cardenal Herrera Oria s/n, 39011 Santander, Spain, E-mail:
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Virginia Álvarez-García
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, EH14 4AS Edinburgh, UK
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| |
Collapse
|
10
|
Mahmoud F, Sarhill N, Mazurczak MA. The therapeutic application of melatonin in supportive care and palliative medicine. Am J Hosp Palliat Care 2016; 22:295-309. [PMID: 16082917 DOI: 10.1177/104990910502200412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Melatonin is a hormone produced mainly in the pineal gland. Plasma levels exhibit a circadian variation with the highest concentration occurring at night. The human biologic effects of melatonin depend upon the time of day it is made available. One of these effects is the setting and resetting of circadian clocks (chronobiotic effect). Additionally, it may be a potent antioxidant and immunomodulator and has been shown to have anti-tumor, anticytokine, anti-insomnia, and anticachexia effects. Melatonin has also been shown to improve survival and performance status in patients with advanced cancer. Objective tumor response occurs with melatonin alone or when combined with interleukin-2 (IL-2). Further, melatonin reduces radiation- and chemotherapeutic-induced toxicity. Symptomatic and circadian disruption is linked to increased cancer risk. The chronobiotic capacity of melatonin to reset circadian clocks may provide a verifiable strategy to reduce cancer risk and enhance quality of life by diminishing cancer-induced circadian disruption.
Collapse
Affiliation(s)
- Fade Mahmoud
- Department of Internal Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | | | | |
Collapse
|
11
|
Kesikli SA, Guler N. Chemotherapeutic Agents in Cancer Treatment and Tryptophan Metabolism. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2015:291-333. [DOI: 10.1007/978-3-319-15630-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell Mol Life Sci 2013; 70:2139-57. [PMID: 23007844 PMCID: PMC11113894 DOI: 10.1007/s00018-012-1161-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023]
Abstract
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Clinical and Molecular Medicine, University “La Sapienza”, Rome, Italy
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental Medicine, University “La Sapienza”, 14-16, Via Antonio Scarpa, Rome, 00161 Italy
| |
Collapse
|
13
|
Dauchy RT, Blask DE, Dauchy EM, Davidson LK, Tirrell PC, Greene MW, Tirrell RP, Hill CR, Sauer LA. Antineoplastic effects of melatonin on a rare malignancy of mesenchymal origin: melatonin receptor-mediated inhibition of signal transduction, linoleic acid metabolism and growth in tissue-isolated human leiomyosarcoma xenografts. J Pineal Res 2009; 47:32-42. [PMID: 19486272 DOI: 10.1111/j.1600-079x.2009.00686.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Melatonin provides a circadian signal that regulates linoleic acid (LA)-dependent tumor growth. In rodent and human cancer xenografts of epithelial origin in vivo, melatonin suppresses the growth-stimulatory effects of linoleic acid (LA) by blocking its uptake and metabolism to the mitogenic agent, 13-hydroxyoctadecadienoic acid (13-HODE). This study tested the hypothesis that both acute and long-term inhibitory effects of melatonin are exerted on LA transport and metabolism, and growth activity in tissue-isolated human leiomyosarcoma (LMS), a rare, mesenchymally-derived smooth muscle tissue sarcoma, via melatonin receptor-mediated inhibition of signal transduction activity. Melatonin added to the drinking water of female nude rats bearing tissue-isolated LMS xenografts and fed a 5% corn oil (CO) diet caused the rapid regression of these tumors (0.17 +/- 0.02 g/day) versus control xenografts that continued to grow at 0.22 +/- 0.03 g/day over a 10-day period. LMS perfused in situ for 150 min with arterial donor blood augmented with physiological nocturnal levels of melatonin showed a dose-dependent suppression of tumor cAMP production, LA uptake, 13-HODE release, extracellular signal-regulated kinase (ERK 1/2), mitogen activated protein kinase (MEK), Akt activation, and [(3)H]thymidine incorporation into DNA and DNA content. The inhibitory effects of melatonin were reversible and preventable with either melatonin receptor antagonist S20928, pertussis toxin, forskolin, or 8-Br-cAMP. These results demonstrate that, as observed in epithelially-derived cancers, a nocturnal physiological melatonin concentration acutely suppress the proliferative activity of mesenchymal human LMS xenografts while long-term treatment of established tumors with a pharmacological dose of melatonin induced tumor regression via a melatonin receptor-mediated signal transduction mechanism involving the inhibition of tumor LA uptake and metabolism.
Collapse
Affiliation(s)
- Robert T Dauchy
- Laboratory of Chrono-Neuroendocrine Oncology, Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA 70112-2699, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Thomas CR, Reiter RJ, Herman TS. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 2002; 20:2575-601. [PMID: 12011138 DOI: 10.1200/jco.2002.11.004] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the chief secretory product of the pineal gland, is a direct free radical scavenger, an indirect antioxidant, as well as an important immunomodulatory agent. In both in vitro and in vivo investigations, melatonin protected healthy cells from radiation-induced and chemotherapeutic drug-induced toxicity. Furthermore, several clinical studies have demonstrated the potential of melatonin, either alone or in combination with traditional therapy, to yield a favorable efficacy to toxicity ratio in the treatment of human cancers. This study reviews the literature from laboratory investigations that document the antioxidant and oncostatic actions of melatonin and summarizes the evidence regarding the potential use of melatonin in cancer treatment. This study also provides rationale for the design of larger translational research-based clinical trials.
Collapse
|
15
|
Abstract
In this article we review the state of the art on the role of the pineal gland and melatonin in mammary cancer tumorigenesis in vivo as well as in vitro. The former hypothesis of a possible role of the pineal gland in mammary cancer development was based on the evidence that the pineal, via its main secretory product, melatonin, downregulates some of the pituitary and gonadal hormones which control mammary gland development and are also responsible for the growth of hormone-dependent mammary tumors. Furthermore, melatonin could act directly on tumoral cells, thereby influencing their proliferative rate. Other possible origins of melatonin's antitumoral actions could be found in its antioxidant or immunoenhancing properties. The working hypotheses of most experiments were that the activation of the pineal gland, or the administration of melatonin, should give rise to antitumoral behavior; conversely, suppression of the pineal gland or melatonin deficits should stimulate mammary tumorigenesis. From in vivo studies on animal models of tumorigenesis, the general conclusion is that experimental manipulations activating the pineal gland, or the administration of melatonin, enlarge the latency and reduce the incidence and growth rate of chemically induced mammary tumors, while pinealectomy usually has the opposite effects. The direct actions of melatonin on mammary tumors have been suggested because of its ability to inhibit, at physiological doses (1 nM), the in vitro proliferation and invasiveness of MCF-7 human breast cancer cells. The fact that most studies have been performed on two models, chemically induced mammary adenocarcinoma in rats (in vivo studies) and the cell tumor line MCF-7 (in vitro studies), makes the generalization of the results somewhat difficult. However, the characteristics of these actions, comprising different aspects of tumor biology such as initiation, proliferation, and metastasis, as well as the doses (physiological range) at which the effect is accomplished, give special value to these findings. On the strength of these data, the small number of clinical studies focusing on the possible therapeutic value of melatonin on breast cancer is surprising.
Collapse
Affiliation(s)
- S Cos
- Department of Physiology and Pharmacology, University of Cantabria, Santander, 39011, Spain
| | | |
Collapse
|
16
|
Abstract
Despite intensive research over the past several decades, the etiology and pathogenesis of multiple sclerosis (MS) remain elusive. The last 20 years have seen only meager advances in the treatment of the disease in part because too much attention has been devoted to the process of demyelination and its relationship to the neurologic symptoms and recovery of the disease. A host of biological phenomena associated with the disease involving interactions among genetic, environmental, immunologic, and hormonal factors, cannot be explained on the basis of demyelination and, therefore, require refocusing attention on alternative explanations, one of which implicates the pineal gland as the pivotal mover of the disease. This review summarizes the evidence linking dysfunction of the pineal gland with the epidemiology, pathogenesis, clinical manifestations, and course of the disease. The pineal hypothesis of MS also provided the impetus for the development of a novel and highly effective therapeutic modality, one that involves the transcranial application of AC pulsed electromagnetic fields in the picotesla flux density.
Collapse
Affiliation(s)
- R Sandyk
- Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY, USA
| |
Collapse
|
17
|
Abstract
The validity of melatonin as a prominent, naturally occurring oncostatic agent is examined in terms of its putative oncostatic mechanism of action, the correlation between melatonin levels and neoplastic activity, and the outcome of therapeutically administered melatonin in clinical trials. Melatonin's mechanism of action is summarized in a brief analysis of its actions at the cellular level, its antioxidative functions, and its indirect immunostimulatory effects. The difficulties of interpreting melatonin levels as a diagnostic or prognostic aid in cancer is illustrated by referral to breast cancer, the most frequently studied neoplasm in trials regarding melatonin. Trials in which melatonin was used therapeutically are reviewed, i.e., early studies using melatonin alone, trials of melatonin in combination with interleukin-2, and controlled studies comparing routine therapy to therapy in combination with melatonin. A table compiling the studies in which melatonin was used in the treatment of cancer in humans is presented according to the type of neoplasm. Melatonin's suitability in combination chemotherapy, where it augments the anticancer effect of other chemotherapeutic drugs while decreasing some of the toxic side effects, is described. Based on the evidence derived from melatonin's antiproliferative, antioxidative, and immunostimulatory mechanisms of action, from its abnormal levels in cancer patients and from clinical trials in which melatonin was administered, it is concluded that melatonin could indeed be considered a physiological anticancer substance. Further well-controlled trials should, however, be performed in order to find the link between its observed effects and the underlying mechanisms of action and to define its significance as a therapeutic oncostatic agent.
Collapse
Affiliation(s)
- A Panzer
- Department of Physiology, University of Pretoria, South Africa
| | | |
Collapse
|
18
|
Wilson BW, Stevens RG. Occupational Exposure to Electromagnetic Fields: The Case for Caution. ACTA ACUST UNITED AC 1996. [DOI: 10.1080/1047322x.1996.10389327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Affiliation(s)
- T Giraldi
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Italy
| | | | | | | |
Collapse
|
20
|
Giraldi T, Perissin L, Zorzet S, Rapozzi V, Rodani MG. Metastasis and neuroendocrine system in stressed mice. Int J Neurosci 1994; 74:265-78. [PMID: 7928111 DOI: 10.3109/00207459408987245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of experimental stressors have been examined for their differential effects on primary tumor growth and spontaneous lung metastasis in syngeneic mice bearing the weakly immunogenic tumor Lewis lung carcinoma. The effects caused by the early weaning, physical restraint and foot-shock are in general small, and affected by a high variability. On the contrary, spatial disorientation reproducibly causes a specific increase in tumor metastases. The effects of spatial disorientation are sensitive to the inhibition by treatment with bromocryptine and guanethidine, and particularly by a central and peripheral adrenergic neuron blocking agent reserpine. The use of different lighting conditions and assay of urinary melatonin excretion reveal an association between pineal gland function and effects of spatial disorientation on metastasis.
Collapse
Affiliation(s)
- T Giraldi
- Institute of Biology, Faculty of Medicine, University of Udine, Italy
| | | | | | | | | |
Collapse
|
21
|
Benítez-King G, Antón-Tay F. Calmodulin mediates melatonin cytoskeletal effects. EXPERIENTIA 1993; 49:635-41. [PMID: 8359270 DOI: 10.1007/bf01923944] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this article, we review the data concerning melatonin interactions with calmodulin. The kinetics of melatonin-calmodulin binding suggest that the hormone modulates cell activity through intracellular binding to the protein at physiological concentration ranges. Melatonin interaction with calmodulin may allow the hormone to modulate rhythmically many cellular functions. Melatonin's effect on tubulin polymerization, and cytoskeletal changes in MDCK and N1E-115 cells cultured with melatonin, suggest that at low concentrations (10(-9) M) cytoskeletal effects are mediated by its antagonism to Ca2+-calmodulin. At higher concentrations (10(-5)M) non-specific binding of melatonin to tubulin occurs thus overcoming the specific melatonin antagonism to Ca2+-calmodulin. Since the structures of melatonin and calmodulin are phylogenetically well preserved, calmodulin-melatonin interaction probably represents a major mechanism for regulation and synchronization of cell physiology.
Collapse
Affiliation(s)
- G Benítez-King
- Instituto Mexicano de Psiquiatría, Departamento de Neurofarmacologia, Col. San Lorenzo Huipulco, México
| | | |
Collapse
|
22
|
Abstract
A tight, physiological link between the pineal gland and the immune system is emerging from a series of experimental studies. This link might reflect the evolutionary connection between self-recognition and reproduction. Pinealectomy or other experimental methods which inhibit melatonin synthesis and secretion induce a state of immunodepression which is counteracted by melatonin. In general, melatonin seems to have an immunoenhancing effect that is particularly apparent in immunodepressive states. The negative effect of acute stress or immunosuppressive pharmacological treatments on various immune parameters are counteracted by melatonin. It seems important to note that one of the main targets of melatonin is the thymus, i.e., the central organ of the immune system. The clinical use of melatonin as an immunotherapeutic agent seems promising in primary and secondary immunodeficiencies as well as in cancer immunotherapy. The immunoenhancing action of melatonin seems to be mediated by T-helper cell-derived opioid peptides as well as by lymphokines and, perhaps, by pituitary hormones. Melatonin-induced-immuno-opioids (MIIO) and lymphokines imply the presence of specific binding sites or melatonin receptors on cells of the immune system. On the other hand, lymphokines such as gamma-interferon and interleukin-2 as well as thymic hormones can modulate the synthesis of melatonin in the pineal gland. The pineal gland might thus be viewed as the crux of a sophisticated immunoneuroendocrine network which functions as an unconscious, diffuse sensory organ.
Collapse
Affiliation(s)
- G J Maestroni
- Center for Experimental Pathology, Istituto Cantonale di Patologia, Locarno, Switzerland
| |
Collapse
|
23
|
Luporini G, Labianca R, Pancera G. Chemotherapy for patients not benefitting from 5-fluorouracil therapy. JOURNAL OF SURGICAL ONCOLOGY. SUPPLEMENT 1991; 2:161-4. [PMID: 1892527 DOI: 10.1002/jso.2930480533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G Luporini
- Division of Medical Oncology, San Carlo Borromeo Hospital, Milan, Italy
| | | | | |
Collapse
|