1
|
Panek WK, Toedebusch RG, Mclaughlin BE, Dickinson PJ, Dyke JE, Woolard KD, Berens ME, Lesniak MS, Sturges BK, Vernau KM, Li C, Miska JM, Toedebusch CM. The CCL2-CCR4 Axis Promotes Regulatory T Cell Trafficking to Canine Glioma Tissues. RESEARCH SQUARE 2024:rs.3.rs-4474288. [PMID: 38947002 PMCID: PMC11213221 DOI: 10.21203/rs.3.rs-4474288/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Purpose Spontaneously occurring glioma in pet dogs is increasingly recognized as a valuable translational model for human glioblastoma. Canine high grade glioma and human glioblastomas share many molecular similarities, including accumulation of immunosuppressive regulatory T cells (Tregs) that inhibit anti-tumor immune responses. Identifying in dog mechanisms responsible for Treg recruitment may afford targeting the cellular population driving immunosuppression, the results providing a rationale for translational clinical studies in human patients. Our group has previously identified C-C motif chemokine 2 (CCL2) as a glioma-derived T-reg chemoattractant acting on chemokine receptor 4 (CCR4) in a murine orthotopic model of glioma. Recently, we demonstrated a robust increase of CCL2 in the brain tissue of canine patients bearing high-grade glioma. Methods We performed a series of in vitro experiments using canine Tregs and patient-derived canine glioma cell lines (GSC 1110, GSC 0514, J3T-Bg, G06A) to interrogate the CCL2-CCR4 signaling axis in the canine. Results We established a flow cytometry gating strategy for identification and isolation of FOXP3+ Tregs in dogs. The canine CD4 + CD25high T-cell population was highly enriched in FOXP3 and CCR4 expression, indicating they are bona fide Tregs. Canine Treg migration was enhanced by CCL2 or by glioma cell line-derived supernatant. Blockade of the CCL2-CCR4 axis significantly reduced migration of canine Tregs. CCL2 mRNA was expressed in all glioma cell lines and expression increased when exposed to Tregs but not to CD4 + helper T-cells. Conclusion Our study validates CCL2-CCR4 as a bi-directional Treg-glioma immunosuppressive and tumor-promoting axis in canine high-grade glioma.
Collapse
Affiliation(s)
| | | | - B E Mclaughlin
- University of California Davis, Flow Cytometry Shared Resource
| | | | - J E Dyke
- University of California Davis, Flow Cytometry Shared Resource
| | | | - M E Berens
- The Translational Genomics Research Institute
| | | | | | | | - C Li
- University of California, Davis
| | | | | |
Collapse
|
2
|
Benoit A, Abraham MJ, Li S, Kim J, Estrada-Tejedor R, Bakadlag R, Subramaniam N, Makhani K, Guilbert C, Tu R, Salaciak M, Klein KO, Coyle KM, Hilton LK, Santiago R, Dmitrienko S, Assouline S, Morin RD, Del Rincon SV, Johnson NA, Mann KK. STAT6 mutations enriched at diffuse large B-cell lymphoma relapse reshape the tumor microenvironment. Int J Hematol 2024; 119:275-290. [PMID: 38285120 PMCID: PMC10920476 DOI: 10.1007/s12185-023-03692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) relapses in approximately 40% of patients following frontline therapy. We reported that STAT6D419 mutations are enriched in relapsed/refractory DLBCL (rrDLBCL) samples, suggesting that JAK/STAT signaling plays a role in therapeutic resistance. We hypothesized that STAT6D419 mutations can improve DLBCL cell survival by reprogramming the microenvironment to sustain STAT6 activation. Thus, we investigated the role of STAT6D419 mutations on DLBCL cell growth and its microenvironment. We found that phospho-STAT6D419N was retained in the nucleus longer than phospho-STAT6WT following IL-4 stimulation, and STAT6D419N recognized a more restricted DNA-consensus sequence than STAT6WT. Upon IL-4 induction, STAT6D419N expression led to a higher magnitude of gene expression changes, but in a more selective list of gene targets compared with STATWT. The most significantly expressed genes induced by STAT6D419N were those implicated in survival, proliferation, migration, and chemotaxis, in particular CCL17. This chemokine, also known as TARC, attracts helper T-cells to the tumor microenvironment, especially in Hodgkin's lymphoma. To this end, in DLBCL, phospho-STAT6+ rrDLBCL cells had a greater proportion of infiltrating CD4+ T-cells than phospho-STAT6- tumors. Our findings suggest that STAT6D419 mutations in DLBCL lead to cell autonomous changes, enhanced signaling, and altered composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Alexandre Benoit
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Madelyn J Abraham
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Sheena Li
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - John Kim
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- University of British Columbia, Vancouver, BC, Canada
| | - Roger Estrada-Tejedor
- Organic and Pharmaceutical Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Rowa Bakadlag
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nivetha Subramaniam
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Kiran Makhani
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Guilbert
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Raymond Tu
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Matthew Salaciak
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Kathleen Oros Klein
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Krysta Mila Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Raoul Santiago
- Department of Pediatrics, Faculty of Medicine, Universite Laval, Quebec City, QC, Canada
| | - Svetlana Dmitrienko
- Division of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Sarit Assouline
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Oncology, McGill University, Montreal, QC, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sonia V Del Rincon
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nathalie A Johnson
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Oncology, McGill University, Montreal, QC, Canada
| | - Koren K Mann
- Lady Davis Institute, Jewish General Hospital, 3755 Côte Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
MAEDA S. Second era of molecular-targeted cancer therapies in dogs. J Vet Med Sci 2023; 85:790-798. [PMID: 37380433 PMCID: PMC10466056 DOI: 10.1292/jvms.23-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
The development of molecular biology and bioinformatics using next-generation sequencing has dramatically advanced the identification of molecules involved in various diseases and the elucidation of their pathogenesis. Consequently, many molecular-targeted therapies have been developed in the medical field. In veterinary medicine, the world's first molecular-targeted drug for animals, masitinib, was approved in 2008, followed by the multikinase inhibitor toceranib in 2009. Toceranib was originally approved for mast cell tumors in dogs but has also been shown to be effective in other tumors because of its ability to inhibit molecules involved in angiogenesis. Thus, toceranib has achieved great success as a molecular-targeted cancer therapy for dogs. Although there has been no progress in the development and commercialization of new molecular-targeted drugs for the treatment of cancer since the success of toceranib, several clinical trials have recently reported the administration of novel agents in the research stage to dogs with tumors. This review provides an overview of molecular-targeted drugs for canine tumors, particularly transitional cell carcinomas, and presents some of our recent data.
Collapse
Affiliation(s)
- Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate
School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Kobayashi M, Onozawa M, Watanabe S, Nagashima T, Tamura K, Kubo Y, Ikeda A, Ochiai K, Michishita M, Bonkobara M, Kobayashi M, Hori T, Kawakami E. Establishment of a BRAF V595E-mutant canine prostate cancer cell line and the antitumor effects of MEK inhibitors against canine prostate cancer. Vet Comp Oncol 2023; 21:221-230. [PMID: 36745053 DOI: 10.1111/vco.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Canine prostate cancer (cPCa) is a malignant neoplasm with no effective therapy. The BRAF V595E mutation, corresponding to the human BRAF V600E mutation, is found frequently in cPCa. Activating BRAF mutations are recognized as oncogenic drivers, and blockade of MAPK/ERK phosphorylation may be an effective therapeutic target against BRAF-mutated tumours. The aim of this study was to establish a novel cPCa cell line and to clarify the antitumor effects of MEK inhibitors on cPCa in vitro and in vivo. We established the novel CHP-2 cPCa cell line that was derived from the prostatic tissue of a cPCa patient. Sequencing of the canine BRAF gene in two cPCa cell lines revealed the presence of the BRAF V595E mutation. MEK inhibitors (trametinib, cobimetinib and mirdametinib) strongly suppressed cell proliferation in vitro, and trametinib showed the highest efficacy against cPCa cells with minimal cytotoxicity to non-cancer COPK cells. Furthermore, we orally administered 0.3 or 1.0 mg/kg trametinib to CHP-2 xenografted mice and examined its antitumor effects in vivo. Trametinib reduced tumour volume, decreased phosphorylated ERK levels, and lowered Ki-67 expression in xenografts in a dose-dependent manner. Although no clear adverse events were observed with administration, trametinib-treated xenografts showed osteogenesis that was independent of dosage. Our results indicate that trametinib induces cell cycle arrest by inhibiting ERK activation, resulting in cPCa tumour regression in a dose-dependent manner. MEK inhibitors, in addition to BRAF inhibitors, may be a targeted agent option for cPCa with the BRAF V595E mutation.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Moe Onozawa
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shiho Watanabe
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kyoichi Tamura
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Akiko Ikeda
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Bonkobara
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masato Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tatsuya Hori
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Eiichi Kawakami
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
- Japan Institute of Small Animal Reproduction (Bio Art), Tokyo, Japan
| |
Collapse
|
5
|
Yokota S, Kaji K, Yonezawa T, Momoi Y, Maeda S. CD204⁺ tumor-associated macrophages are associated with clinical outcome in canine pulmonary adenocarcinoma and transitional cell carcinoma. Vet J 2023; 296-297:105992. [PMID: 37164121 DOI: 10.1016/j.tvjl.2023.105992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Tumor-associated macrophages are abundant infiltrating cells in the tumor microenvironment (TME). Macrophages can be classified into several types of subsets based on their immune responses. Among those subsets, M2 macrophages contribute to anti-inflammatory responses and create an immunosuppressive environment that promotes tumor cell proliferation. In a previous study, human cancer patients with high M2 macrophages showed a worse prognosis for many types of tumors. However, studies examining the relationship between M2 macrophages and clinical outcomes in canine tumors are limited. In the previous human and canine studies, CD204 has been used as the marker for detecting M2 macrophages. Then we evaluated CD204+ and total macrophages infiltration and its association with clinical outcomes in canine solid tumors. In this study, we examined dogs with oral malignant melanoma (OMM), pulmonary adenocarcinoma (PA), hepatocellular carcinoma (HCC), and transitional cell carcinoma (TCC). Compared to healthy tissues, CD204+ and total macrophages were increased in OMM, PA, and TCC, but not in HCC. High CD204+ macrophage levels were significantly associated with lung metastasis in TCC (P = 0.030). Kaplan-Meier analysis revealed that high CD204+ macrophage levels were associated with shorter overall survival (OS) in canine patients with PA (P = 0.012) and TCC (P = 0.0053). These results suggest that CD204+ macrophages contribute to tumor progression and could be a prognostic factor in dogs with PA and TCC.
Collapse
Affiliation(s)
- S Yokota
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Kaji
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - S Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
6
|
Kaszak I, Witkowska-Piłaszewicz O, Domrazek K, Jurka P. The Novel Diagnostic Techniques and Biomarkers of Canine Mammary Tumors. Vet Sci 2022; 9:526. [PMID: 36288138 PMCID: PMC9610006 DOI: 10.3390/vetsci9100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
Canine mammary tumors (CMTs) are considered a serious clinical problem in older bitches. Due to the high malignancy rate and poor prognosis, an early diagnosis is essential. This article is a summary of novel diagnostic techniques as well as the main biomarkers of CMTs. So far, CMTs are detected only when changes in mammary glands are clinically visible and surgical removal of the mass is the only recommended treatment. Proper diagnostics of CMT is especially important as they represent a very diverse group of tumors and therefore different treatment approaches may be required. Recently, new diagnostic options appeared, like a new cytological grading system of CMTs or B-mode ultrasound, the Doppler technique, contrast-enhanced ultrasound, and real-time elastography, which may be useful in pre-surgical evaluation. However, in order to detect malignancies before macroscopic changes are visible, evaluation of serum and tissue biomarkers should be considered. Among them, we distinguish markers of the cell cycle, proliferation, apoptosis, metastatic potential and prognosis, hormone receptors, inflammatory and more recent: metabolomic, gene expression, miRNA, and transcriptome sequencing markers. The use of a couple of the above-mentioned markers together seems to be the most useful for the early diagnosis of neoplastic diseases as well as to evaluate response to treatment, presence of tumor progression, or further prognosis. Molecular aspects of tumors seem to be crucial for proper understanding of tumorigenesis and the application of individual treatment options.
Collapse
Affiliation(s)
- Ilona Kaszak
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Kinga Domrazek
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Jurka
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
7
|
Meng L, He X, Hong Q, Qiao B, Zhang X, Wu B, Zhang X, Wei Y, Li J, Ye Z, Xiao Y. CCR4, CCR8, and P2RY14 as Prognostic Factors in Head and Neck Squamous Cell Carcinoma Are Involved in the Remodeling of the Tumor Microenvironment. Front Oncol 2021; 11:618187. [PMID: 33692955 PMCID: PMC7937936 DOI: 10.3389/fonc.2021.618187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical role in the initiation and progression of cancer. However, the specific mechanism of its regulation in head and neck squamous cell carcinoma (HNSCC) remains unclear. In this study, we first applied the ESTIMATE method to calculate the immune and stromal scores in patients’ tumor tissues from The Cancer Genome Atlas (TCGA) database. GSE41613, GSE30784, and GSE37991 data sets from the Gene Expression Omnibus (GEO) database were recruited for further validation. Differentially expressed genes (DEGs) were identified and then analyzed by Cox regression analysis and protein-protein interaction (PPI) network construction. DEGs significantly associated with prognosis and TME will be identified as hub genes. These genes were also validated at the protein level by immunohistochemical analysis of 10 pairs of primary tumor tissues and the adjacent normal tissues from our institution. The relationship between hub genes expression and immune cell fraction estimated by CIBERSORT software was also examined. 275 DEGs were significantly associated with TME. CCR4, CCR8, and P2RY14 have then identified as hub genes by intersection Cox and PPI analysis. Further investigation revealed that the expression of CCR4, CCR8, and P2RY14 was negatively correlated with clinicopathological characteristics (clinical stage, T stage) and positively associated with survival in HNSCC patients, especially in male patients. The expression of CCR8 and P2RY14 was lower in males than in females. CCR8 and P2RY14 were differentially expressed in tumor tissues than normal tissues, and the results were validated at the protein level by immunohistochemistry experiments. Gene set enrichment analysis (GSEA) showed that the high expression groups’ hub genes were mainly enriched for immune-related activities. In the low-expression groups, genes were primarily enriched in metabolic pathways. CIBERSORT results showed that the expression of these genes was all negatively correlated with the fraction of memory B cells and positively correlated with the fraction of the other four cells, including naive B cells, resting T cells CD4 memory, T cells follicular helper, and T cells regulatory (Tregs). The results suggest that CCR4, CCR8, and P2RY14 may be responsible for maintaining the immune dominance of TME, thus leading to a better prognosis.
Collapse
Affiliation(s)
- Liangliang Meng
- Medical School of Chinese PLA, Beijing, China.,Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Chinese PAP Beijing Corps Hospital, Beijing, China
| | - Xiaoxi He
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Quan Hong
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Bo Qiao
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiao Zhang
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Bin Wu
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Chinese PAP Beijing Corps Hospital, Beijing, China
| | - Xiaobo Zhang
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yingtian Wei
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yueyong Xiao
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Maeda S, Yoshitake R, Chambers JK, Uchida K, Eto S, Ikeda N, Nakagawa T, Nishimura R, Goto-Koshino Y, Yonezawa T, Momoi Y. BRAF V595E Mutation Associates CCL17 Expression and Regulatory T Cell Recruitment in Urothelial Carcinoma of Dogs. Vet Pathol 2020; 58:971-980. [PMID: 33205710 DOI: 10.1177/0300985820967449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulatory T cells may serve as targets in cancer immunotherapy. A previous study showed that the chemokine CCL17 and the receptor CCR4 play roles in regulatory T cell recruitment in canine urothelial carcinoma. In this article, we show that the BRAFV595E mutation is associated with tumor-produced CCL17 and regulatory T cell infiltration in dogs with urothelial carcinoma. In comparison with healthy dogs, dogs with urothelial carcinoma showed increased CCL17 mRNA expression in the bladder and elevated CCL17 protein concentration in urine. Immunohistochemistry showed increased levels of Foxp3+ regulatory T cells in the tumor tissues of urothelial carcinoma. The density of Foxp3+ regulatory T cells was positively correlated with CCL17 concentration in urine, indicating that CCL17 is involved in regulatory T cell recruitment. Moreover, tumor-infiltrating regulatory T cells and urine CCL17 concentration were associated with poor prognosis in dogs with urothelial carcinoma. The number of tumor-infiltrating regulatory T cells, CCL17 mRNA expression, and urine CCL17 concentration in cases with BRAFV595E mutation were higher than those in cases with wild-type BRAF. In vitro, high CCL17 production was detected in a canine urothelial carcinoma cell line with BRAFV595E mutation but not in an urothelial carcinoma cell line with wild-type BRAF. Dabrafenib, a BRAF inhibitor, decreased CCL17 production in the cell line with BRAFV595E mutation. These results suggest that BRAFV595E mutation induced CCL17 production and contributed to regulatory T cell recruitment in canine urothelial carcinoma.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Shotaro Eto
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Yuko Goto-Koshino
- Molecular Diagnostic Laboratory, Veterinary Medical Center, 13143The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| |
Collapse
|