1
|
Dolfi S, Testolin A, Cutini S, Zorzi M. Measuring temporal bias in sequential numerosity comparison. Behav Res Methods 2024; 56:7561-7573. [PMID: 38750387 PMCID: PMC11362239 DOI: 10.3758/s13428-024-02436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 08/30/2024]
Abstract
While several methods have been proposed to assess the influence of continuous visual cues in parallel numerosity estimation, the impact of temporal magnitudes on sequential numerosity judgments has been largely ignored. To overcome this issue, we extend a recently proposed framework that makes it possible to separate the contribution of numerical and non-numerical information in numerosity comparison by introducing a novel stimulus space designed for sequential tasks. Our method systematically varies the temporal magnitudes embedded into event sequences through the orthogonal manipulation of numerosity and two latent factors, which we designate as "duration" and "temporal spacing". This allows us to measure the contribution of finer-grained temporal features on numerosity judgments in several sensory modalities. We validate the proposed method on two different experiments in both visual and auditory modalities: results show that adult participants discriminated sequences primarily by relying on numerosity, with similar acuity in the visual and auditory modality. However, participants were similarly influenced by non-numerical cues, such as the total duration of the stimuli, suggesting that temporal cues can significantly bias numerical processing. Our findings highlight the need to carefully consider the continuous properties of numerical stimuli in a sequential mode of presentation as well, with particular relevance in multimodal and cross-modal investigations. We provide the complete code for creating sequential stimuli and analyzing participants' responses.
Collapse
Affiliation(s)
- Serena Dolfi
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, Italy.
| | - Alberto Testolin
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy
- Department of Mathematics, University of Padova, Padova, Italy
| | - Simone Cutini
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
2
|
Hendrikx E, Paul JM, van Ackooij M, van der Stoep N, Harvey BM. Cortical quantity representations of visual numerosity and timing overlap increasingly into superior cortices but remain distinct. Neuroimage 2024; 286:120515. [PMID: 38216105 DOI: 10.1016/j.neuroimage.2024.120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Many sensory brain areas are organized as topographic maps where neural response preferences change gradually across the cortical surface. Within association cortices, 7-Tesla fMRI and neural model-based analyses have also revealed many topographic maps for quantities like numerosity and event timing, often in similar locations. Numerical and temporal quantity estimations also show behavioral similarities and even interactions. For example, the duration of high-numerosity displays is perceived as longer than that of low-numerosity displays. Such interactions are often ascribed to a generalized magnitude system with shared neural responses across quantities. Anterior quantity responses are more closely linked to behavior. Here, we investigate whether common quantity representations hierarchically emerge by asking whether numerosity and timing maps become increasingly closely related in their overlap, response preferences, and topography. While the earliest quantity maps do not overlap, more superior maps overlap increasingly. In these overlapping areas, some intraparietal maps have consistently correlated numerosity and timing preferences, and some maps have consistent angles between the topographic progressions of numerosity and timing preferences. However, neither of these relationships increases hierarchically like the amount of overlap does. Therefore, responses to different quantities are initially derived separately, then progressively brought together, without generally becoming a common representation. Bringing together distinct responses to different quantities may underlie behavioral interactions and allow shared access to comparison and action planning systems.
Collapse
Affiliation(s)
- Evi Hendrikx
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands.
| | - Jacob M Paul
- Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville 3010, Victoria, Australia
| | - Martijn van Ackooij
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Nathan van der Stoep
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| |
Collapse
|
3
|
The role of spatial information in an approximate cross-modal number matching task. Atten Percept Psychophys 2023; 85:1253-1266. [PMID: 36720781 PMCID: PMC9888741 DOI: 10.3758/s13414-023-02658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
The approximate number system (ANS) is thought to be an innate cognitive system that allows humans to perceive numbers (>4) in a fuzzy manner. One assumption of the ANS is that numerosity is represented amodally due to a mechanism, which filters out nonnumerical information from stimulus material. However, some studies show that nonnumerical information (e.g., spatial parameters) influence the numerosity percept as well. Here, we investigated whether there is a cross-modal transfer of spatial information between the haptic and visual modality in an approximate cross-modal number matching task. We presented different arrays of dowels (haptic stimuli) to 50 undergraduates and asked them to compare haptically perceived numerosity to two visually presented dot arrays. Participants chose which visually presented array matched the numerosity of the haptic stimulus. The distractor varied in number and displayed a random pattern, whereas the matching (target) dot array was either spatially identical or spatially randomized (to the haptic stimulus). We hypothesized that if a "numerosity" percept is based solely on number, neither spatially identical nor spatial congruence between the haptic and the visual target arrays would affect the accuracy in the task. However, results show significant processing advantages for targets with spatially identical patterns and, furthermore, that spatial congruency between haptic source and visual target facilitates performance. Our results show that spatial information was extracted from the haptic stimuli and influenced participants' responses, which challenges the assumption that numerosity is represented in a truly abstract manner by filtering out any other stimulus features.
Collapse
|
4
|
Underestimation in temporal numerosity judgments computationally explained by population coding model. Sci Rep 2022; 12:15632. [PMID: 36115877 PMCID: PMC9482646 DOI: 10.1038/s41598-022-19941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to judge numerosity is essential to an animal’s survival. Nevertheless, the number of signals presented in a sequence is often underestimated. We attempted to elucidate the mechanism for the underestimation by means of computational modeling based on population coding. In the model, the population of neurons which were selective to the logarithmic number of signals responded to sequential signals and the population activity was integrated by a temporal window. The total number of signals was decoded by a weighted average of the integrated activity. The model predicted well the general trends in the human data while the prediction was not fully sufficient for the novel aging effect wherein underestimation was significantly greater for the elderly than for the young in specific stimulus conditions. Barring the aging effect, we can conclude that humans judge the number of signals in sequence by temporally integrating the neural representations of numerosity.
Collapse
|
5
|
Get in touch with numbers - an approximate number comparison task in the haptic modality. Atten Percept Psychophys 2022; 84:943-959. [PMID: 35064556 PMCID: PMC9001573 DOI: 10.3758/s13414-021-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/12/2022]
Abstract
The Approximate Number System (ANS) is conceptualized as an innate cognitive system that allows humans to perceive numbers of objects or events (>4) in a fuzzy, imprecise manner. The representation of numbers is assumed to be abstract and not bound to a particular sense. In the present study, we test the assumption of a shared cross-sensory system. We investigated approximate number processing in the haptic modality and compared performance to that of the visual modality. We used a dot comparison task (DCT), in which participants compare two dot arrays and decide which one contains more dots. In the haptic DCT, 67 participants had to compare two simultaneously presented dot arrays with the palms of their hands; in the visual DCT, participants inspected and compared dot arrays on a screen. Tested ratios ranged from 2.0 (larger/smaller number) to 1.1. As expected, in both the haptic and the visual DCT responses similarly depended on the ratio of the numbers of dots in the two arrays. However, on an individual level, we found evidence against medium or stronger positive correlations between “ANS acuity” in the visual and haptic DCTs. A regression model furthermore revealed that besides number, spacing-related features of dot patterns (e.g., the pattern’s convex hull) contribute to the percept of numerosity in both modalities. Our results contradict the strong theory of the ANS solely processing number and being independent of a modality. According to our regression and response prediction model, our results rather point towards a modality-specific integration of number and number-related features.
Collapse
|
6
|
Tsouli A, Harvey BM, Hofstetter S, Cai Y, van der Smagt MJ, Te Pas SF, Dumoulin SO. The role of neural tuning in quantity perception. Trends Cogn Sci 2021; 26:11-24. [PMID: 34702662 DOI: 10.1016/j.tics.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Perception of quantities, such as numerosity, timing, and size, is essential for behavior and cognition. Accumulating evidence demonstrates neurons processing quantities are tuned, that is, have a preferred quantity amount, not only for numerosity, but also other quantity dimensions and sensory modalities. We argue that quantity-tuned neurons are fundamental to understanding quantity perception. We illustrate how the properties of quantity-tuned neurons can underlie a range of perceptual phenomena. Furthermore, quantity-tuned neurons are organized in distinct but overlapping topographic maps. We suggest that this overlap in tuning provides the neural basis for perceptual interactions between different quantities, without the need for a common neural representational code.
Collapse
Affiliation(s)
- Andromachi Tsouli
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Ben M Harvey
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Shir Hofstetter
- The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Yuxuan Cai
- The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Maarten J van der Smagt
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Susan F Te Pas
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, The Netherlands.
| |
Collapse
|