1
|
Sun JV, Jing Z, Rankin J, Rinzel J. Perceptual tri-stability, measured and fitted as emergent from a model for bistable alternations. Hear Res 2024; 453:109123. [PMID: 39437585 DOI: 10.1016/j.heares.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
The human auditory system in attempting to decipher ambiguous sounds appears to resort to perceptual exploration as evidenced by multi-stable perceptual alternations. This phenomenon has been widely investigated via the auditory streaming paradigm, employing ABA_ triplet sequences with much research focused on perceptual bi-stability with the alternate percepts as either a single integrated stream or as two simultaneous distinct streams. We extend this inquiry with experiments and modeling to include tri-stable perception. Here, the segregated percepts may involve a foreground/background distinction. We collected empirical data from participants engaged in a tri-stable auditory task, utilizing this dataset to refine a neural mechanistic model that had successfully reproduced multiple features of auditory bi-stability. Remarkably, the model successfully emulated basic statistical characteristics of tri-stability without substantial modification. This model also allows us to demonstrate a parsimonious approach to account for individual variability by adjusting the parameter of either the noise level or the neural adaptation strength.
Collapse
Affiliation(s)
- Jiaqiu Vince Sun
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA; New York University Shanghai, 567 West Yangsi Rd, Pudong New District, Shanghai, 200124, PR China
| | - Zeyu Jing
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, USA; Current Affiliation: Computation & Neural Systems, Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - James Rankin
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Rd, Exeter EX4 4QF, UK
| | - John Rinzel
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, USA.
| |
Collapse
|
2
|
Grenzebach J, Wegner TGG, Einhäuser W, Bendixen A. Bimodal moment-by-moment coupling in perceptual multistability. J Vis 2024; 24:16. [PMID: 38819806 PMCID: PMC11146044 DOI: 10.1167/jov.24.5.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Multistable perception occurs in all sensory modalities, and there is ongoing theoretical debate about whether there are overarching mechanisms driving multistability across modalities. Here we study whether multistable percepts are coupled across vision and audition on a moment-by-moment basis. To assess perception simultaneously for both modalities without provoking a dual-task situation, we query auditory perception by direct report, while measuring visual perception indirectly via eye movements. A support-vector-machine (SVM)-based classifier allows us to decode visual perception from the eye-tracking data on a moment-by-moment basis. For each timepoint, we compare visual percept (SVM output) and auditory percept (report) and quantify the co-occurrence of integrated (one-object) or segregated (two-objects) interpretations in the two modalities. Our results show an above-chance coupling of auditory and visual perceptual interpretations. By titrating stimulus parameters toward an approximately symmetric distribution of integrated and segregated percepts for each modality and individual, we minimize the amount of coupling expected by chance. Because of the nature of our task, we can rule out that the coupling stems from postperceptual levels (i.e., decision or response interference). Our results thus indicate moment-by-moment perceptual coupling in the resolution of visual and auditory multistability, lending support to theories that postulate joint mechanisms for multistable perception across the senses.
Collapse
Affiliation(s)
- Jan Grenzebach
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
- Physics of Cognition Group, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Thomas G G Wegner
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
- Physics of Cognition Group, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Wolfgang Einhäuser
- Physics of Cognition Group, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
- https://www.tu-chemnitz.de/physik/PHKP/index.html.en
| | - Alexandra Bendixen
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
- https://www.tu-chemnitz.de/physik/SFKS/index.html.en
| |
Collapse
|
3
|
Wilson M, Hecker L, Joos E, Aertsen A, Tebartz van Elst L, Kornmeier J. Spontaneous Necker-cube reversals may not be that spontaneous. Front Hum Neurosci 2023; 17:1179081. [PMID: 37323933 PMCID: PMC10268006 DOI: 10.3389/fnhum.2023.1179081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction During observation of the ambiguous Necker cube, our perception suddenly reverses between two about equally possible 3D interpretations. During passive observation, perceptual reversals seem to be sudden and spontaneous. A number of theoretical approaches postulate destabilization of neural representations as a pre-condition for reversals of ambiguous figures. In the current study, we focused on possible Electroencephalogram (EEG) correlates of perceptual destabilization, that may allow prediction of an upcoming perceptual reversal. Methods We presented ambiguous Necker cube stimuli in an onset-paradigm and investigated the neural processes underlying endogenous reversals as compared to perceptual stability across two consecutive stimulus presentations. In a separate experimental condition, disambiguated cube variants were alternated randomly, to exogenously induce perceptual reversals. We compared the EEG immediately before and during endogenous Necker cube reversals with corresponding time windows during exogenously induced perceptual reversals of disambiguated cube variants. Results For the ambiguous Necker cube stimuli, we found the earliest differences in the EEG between reversal trials and stability trials already 1 s before a reversal occurred, at bilateral parietal electrodes. The traces remained similar until approximately 1100 ms before a perceived reversal, became maximally different at around 890 ms (p = 7.59 × 10-6, Cohen's d = 1.35) and remained different until shortly before offset of the stimulus preceding the reversal. No such patterns were found in the case of disambiguated cube variants. Discussion The identified EEG effects may reflect destabilized states of neural representations, related to destabilized perceptual states preceding a perceptual reversal. They further indicate that spontaneous Necker cube reversals are most probably not as spontaneous as generally thought. Rather, the destabilization may occur over a longer time scale, at least 1 s before a reversal event, despite the reversal event as such being perceived as spontaneous by the viewer.
Collapse
Affiliation(s)
- Mareike Wilson
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lukas Hecker
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ellen Joos
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, Strasbourg, France
| | - Ad Aertsen
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Saracini C. Perceptual Awareness and Its Relationship with Consciousness: Hints from Perceptual Multistability. NEUROSCI 2022; 3:546-557. [PMID: 39483774 PMCID: PMC11523755 DOI: 10.3390/neurosci3040039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 11/03/2024] Open
Abstract
Many interesting theories of consciousness have been proposed, but so far, there is no "unified" theory capable of encompassing all aspects of this phenomenon. We are all aware of what it feels like to be conscious and what happens if there is an absence of consciousness. We are becoming more and more skilled in measuring consciousness states; nevertheless, we still "don't get it" in its deeper essence. How does all the processed information converge from different brain areas and structures to a common unity, giving us this very private "feeling of being conscious", despite the constantly changing flow of information between internal and external states? "Multistability" refers to a class of perceptual phenomena where subjective awareness spontaneously and continuously alternates between different percepts, although the objective stimuli do not change, supporting the idea that the brain "interprets" sensorial input in a "constructive" way. In this perspective paper, multistability and perceptual awareness are discussed as a methodological window for understanding the "local" states of consciousness, a privileged position from which it is possible to observe the brain dynamics and mechanisms producing the subjective phenomena of perceptual awareness in the very moment they are happening.
Collapse
Affiliation(s)
- Chiara Saracini
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile;
- The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca 3480094, Chile
| |
Collapse
|