1
|
Bass JD, Marchant JK, de Sam Lazaro SL, Baum CM. Application of the Person-Environment-Occupation-Performance Model: A Scoping Review. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2024; 44:521-540. [PMID: 38519867 PMCID: PMC11180417 DOI: 10.1177/15394492241238951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The Person-Environment-Occupation-Performance (PEOP) Model is one of several occupation-based models in occupational therapy. The model describes the transactional nature of person, environment, and occupation factors that support performance (doing), participation (engagement), and well-being (health and quality of life). The purpose of this study was to explore the extent and nature of evidence on the PEOP Model. We used a scoping review to identify and analyze journal articles that used the PEOP Model as a framework for study. The PRISMA extension for scoping reviews (PRISMA-ScR) criteria were used to develop the research methods. We found 109 articles that adopted the PEOP Model as an organizing framework. The studies reviewed represent the breadth of occupational therapy practice and the transactional nature of person, environment, occupation, and performance in the PEOP Model. The PEOP Model is a useful international framework for research and practice across populations, conditions, life circumstances, settings, and areas of practice.
Collapse
|
2
|
Zanotto A, Glover RN, Zanotto T, Boele FW. Rehabilitation in People Living with Glioblastoma: A Narrative Review of the Literature. Cancers (Basel) 2024; 16:1699. [PMID: 38730651 PMCID: PMC11083409 DOI: 10.3390/cancers16091699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor. While preliminary data point to the positive effects of rehabilitation for patients with glioblastoma, there are unique challenges for clinicians working with this population, including limited life expectancy and/or rapid neurological deterioration. The aim of this article is to review the literature on rehabilitation of adults with glioblastoma, including the feasibility of interventions, their effectiveness, as well as the current clinical practice. The reviewed literature suggests that rehabilitation has been found beneficial for improving the functional prognosis and quality of life of adults with glioblastoma and is desired by patients. We summarize the qualitative evidence regarding healthcare professionals' and patients' perspectives on the use of supportive care services. We conclude there is a need for the design of effective rehabilitation programs for patients with glioblastoma, as well as for the development of glioblastoma-specific clinical guidelines for rehabilitation practitioners.
Collapse
Affiliation(s)
- Anna Zanotto
- Department of Occupational Therapy Education, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; (R.N.G.); (T.Z.)
| | - Rebecca N. Glover
- Department of Occupational Therapy Education, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; (R.N.G.); (T.Z.)
| | - Tobia Zanotto
- Department of Occupational Therapy Education, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; (R.N.G.); (T.Z.)
| | - Florien W. Boele
- Patient Centred Outcomes Research Group, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS2 9JT, UK
- Academic Unit of Health Economics, Leeds Institute of Health Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
End-of-Life Care and the Role of Occupational Therapy. Am J Occup Ther 2023; 77:7713410210. [PMID: 38154142 DOI: 10.5014/ajot.2023.77s3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
This AOTA Position Statement describes the role of occupational therapy practitioners in providing services to clients who are living with terminal conditions and who are at the end of life, as well as their role in providing services and support to caregivers.
Collapse
|
4
|
Martinez B, Leon R, Fabelo H, Ortega S, Piñeiro JF, Szolna A, Hernandez M, Espino C, J. O’Shanahan A, Carrera D, Bisshopp S, Sosa C, Marquez M, Camacho R, Plaza MDLL, Morera J, M. Callico G. Most Relevant Spectral Bands Identification for Brain Cancer Detection Using Hyperspectral Imaging. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5481. [PMID: 31842410 PMCID: PMC6961052 DOI: 10.3390/s19245481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/01/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5-465.96 nm, 498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-731.53 nm and 884.32-902.51 nm.
Collapse
Affiliation(s)
- Beatriz Martinez
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain; (R.L.); (H.F.); (S.O.); (G.M.C.)
| | - Raquel Leon
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain; (R.L.); (H.F.); (S.O.); (G.M.C.)
| | - Himar Fabelo
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain; (R.L.); (H.F.); (S.O.); (G.M.C.)
| | - Samuel Ortega
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain; (R.L.); (H.F.); (S.O.); (G.M.C.)
| | - Juan F. Piñeiro
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Adam Szolna
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Maria Hernandez
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Carlos Espino
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Aruma J. O’Shanahan
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - David Carrera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Sara Bisshopp
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Coralia Sosa
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Mariano Marquez
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Rafael Camacho
- Department of Pathological Anatomy, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (R.C.); (M.d.l.L.P.)
| | - Maria de la Luz Plaza
- Department of Pathological Anatomy, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (R.C.); (M.d.l.L.P.)
| | - Jesus Morera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, 35010 Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain; (J.F.P.); (A.S.); (M.H.); (C.E.); (A.J.O.); (D.C.); (S.B.); (C.S.); (M.M.); (J.M.)
| | - Gustavo M. Callico
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain; (R.L.); (H.F.); (S.O.); (G.M.C.)
| |
Collapse
|