1
|
Storm FA, Redaelli DF, Biffi E, Reni G, Fraschini P. Additive Manufacturing of Spinal Braces: Evaluation of Production Process and Postural Stability in Patients with Scoliosis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6221. [PMID: 36143533 PMCID: PMC9502321 DOI: 10.3390/ma15186221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Spinal orthoses produced using additive manufacturing show great potential for obtaining patient-specific solutions in clinical applications, reducing manual operations, time consumption, and material waste. This study was conducted to evaluate the production process of spinal orthoses produced by additive manufacturing, and to test the effects of 3D-printed braces on postural stability in patients with adolescent idiopathic scoliosis and osteogenesis imperfecta. Ten patients were recruited consecutively and were asked to wear a spinal orthosis produced by additive manufacturing for 2 weeks. The four phases of the production process for each brace were evaluated separately on a scale from 0 (not acceptable) to 3 (optimal). Postural stability in the unbraced and the two braced conditions (3D-printed and conventional) was assessed using validated metrics obtained from a wearable inertial sensor. The production process was evaluated as good in four cases, acceptable in five cases, and not acceptable in one case, due to problems in the printing phase. No statistically significant differences were observed in any of the postural balance metrics between the 3D-printed and conventional brace. On the other hand, postural balance metrics improved significantly with both types of braces with respect to the unbraced condition. Spinal orthoses produced with an innovative production process based on digital scans, CAD, and 3D printing are valid alternatives to conventionally produced orthoses, providing equivalent postural stability.
Collapse
|
2
|
Hansen TC, Citterman AR, Stone ES, Tully TN, Baschuk CM, Duncan CC, George JA. A Multi-User Transradial Functional-Test Socket for Validation of New Myoelectric Prosthetic Control Strategies. Front Neurorobot 2022; 16:872791. [PMID: 35783364 PMCID: PMC9247306 DOI: 10.3389/fnbot.2022.872791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
The validation of myoelectric prosthetic control strategies for individuals experiencing upper-limb loss is hindered by the time and cost affiliated with traditional custom-fabricated sockets. Consequently, researchers often rely upon virtual reality or robotic arms to validate novel control strategies, which limits end-user involvement. Prosthetists fabricate diagnostic check sockets to assess and refine socket fit, but these clinical techniques are not readily available to researchers and are not intended to assess functionality for control strategies. Here we present a multi-user, low-cost, transradial, functional-test socket for short-term research use that can be custom-fit and donned rapidly, used in conjunction with various electromyography configurations, and adapted for use with various residual limbs and terminal devices. In this study, participants with upper-limb amputation completed functional tasks in physical and virtual environments both with and without the socket, and they reported on their perceived comfort level over time. The functional-test socket was fabricated prior to participants' arrival, iteratively fitted by the researchers within 10 mins, and donned in under 1 min (excluding electrode placement, which will vary for different use cases). It accommodated multiple individuals and terminal devices and had a total cost of materials under $10 USD. Across all participants, the socket did not significantly impede functional task performance or reduce the electromyography signal-to-noise ratio. The socket was rated as comfortable enough for at least 2 h of use, though it was expectedly perceived as less comfortable than a clinically-prescribed daily-use socket. The development of this multi-user, transradial, functional-test socket constitutes an important step toward increased end-user participation in advanced myoelectric prosthetic research. The socket design has been open-sourced and is available for other researchers.
Collapse
Affiliation(s)
- Taylor C. Hansen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Abigail R. Citterman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Handspring, Salt Lake City, UT, United States
| | - Eric S. Stone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Troy N. Tully
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | | | - Christopher C. Duncan
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, United States
| | - Jacob A. George
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, United States
- Departments of Electrical and Computer Engineering and Mechanical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|