1
|
Sagües‐Sesé E, García‐Casares N, Álvarez‐Twose I. Cognitive, neuropsychiatric and neurological alterations in mastocytosis: A systematic review. Clin Transl Allergy 2023; 13:e12319. [PMID: 38146805 PMCID: PMC10718195 DOI: 10.1002/clt2.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Mastocytosis manifests with multisystemic symptoms, often involving the nervous system. Numerous cognitive, neuropsychiatric and neurological alterations have been reported in multiple observational studies. METHODS We performed a qualitative systematic literature review of reported data consulting the electronic databases Medline, Scopus, Web of Science, Cochrane, and BASE until June 2023. RESULTS We selected 24 studies in which the majority showed that a high proportion of mastocytosis patients suffer cognitive, neuropsychiatric and neurological alterations. The most common disorders and estimated ranges of frequency observed in adults were depression (68%-75%), anxiety, high stress or irritability (27%-54%), cognitive impairment (27%-39%, primarily affecting memory skills), and headaches (55%-69%). Attention challenges and learning difficulties were reported in children at a rate of 13%, while neurodevelopmental disorders occurred at rates of 8%-12%. Frequent white abnormalities in mastocytosis patients with concomitant psychocognitive symptoms have been reported although neuroimaging studies have been performed rarely in this population. CONCLUSION Further studies with more comprehensive and homogeneous evaluations and neuroimaging and histological analysis should be performed for a better understanding of these manifestations. An earlier detection and proper management of these symptoms could greatly improve the quality of life of these patients.
Collapse
Affiliation(s)
- Elena Sagües‐Sesé
- Departamento de Medicina, Facultad de MedicinaUniversidad de MálagaMálagaSpain
| | - Natalia García‐Casares
- Departamento de Medicina, Facultad de MedicinaUniversidad de MálagaMálagaSpain
- Centro de Investigaciones Médico‐Sanitarias (CIMES), Fundación General de la Universidad de Málaga, Universidad de MálagaMálagaSpain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND)MálagaSpain
| | - Ivan Álvarez‐Twose
- Instituto de Estudios de Mastocitosis de Castilla‐La Mancha (CLMast)Reference Center for Mastocytosis and CIBERONCToledoSpain
- Spanish Network on Mastocytosis (REMA)Toledo and SalamancaSpain
- Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)ToledoSpain
| |
Collapse
|
2
|
Sbei S, Moncrief T, Limjunyawong N, Zeng Y, Green DP. PACAP activates MRGPRX2 on meningeal mast cells to drive migraine-like pain. Sci Rep 2023; 13:12302. [PMID: 37516794 PMCID: PMC10387048 DOI: 10.1038/s41598-023-39571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023] Open
Abstract
Migraine ranks among the most prevalent disorders worldwide, leading to disability and decreased quality of life in patients. Recently, neurogenic inflammation has been recognized as a potential underlying pathology contributing to the migraine pain pathway. Mast cells reside in the meninges and have been implicated in contributing to the pathophysiology of migraine. Here we report for the first time that the mouse Mas-Related G-protein-coupled Receptor B2 (MrgprB2), is expressed on meningeal connective tissue mast cells and contributes to Pituitary Adenylate Cyclase Activating Peptide (PACAP)-induced migraine-like pain behavior. We also found that PACAP was able to dose-dependently lead to enzyme release from human mast cells via activation of MRGPRX2; the human homolog of MrgprB2. Using a transgenic MRGPRX2 mouse, we observed significant increases in PACAP-induced migraine-like pain behavior in MRGPRX2+ mice vs mice lacking the receptor. These results reveal both MrgprB2 and MRGPRX2 as important contributors to neuropeptide-induced migraine pain.
Collapse
Affiliation(s)
- Sami Sbei
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Taylor Moncrief
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Yaping Zeng
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Dustin P Green
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Di Mauro P, Anzivino R, Distefano M, Borzì DD. Systemic mastocytosis: The roles of histamine and its receptors in the central nervous system disorders. J Neurol Sci 2021; 427:117541. [PMID: 34139449 DOI: 10.1016/j.jns.2021.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Mastocytosis is a rare disease of clonal hematological disorders characterized by a pathological accumulation of Mast Cells (MCs) in different tissues, with variable symptomatology and prognosis. Signs and symptoms of Systemic Mastocytosis (SM) are due to pathological infiltration of MCs and to the release of chemical mediators, mainly histamine. Patients with SM may also present with neurological symptoms or complications. The pathophysiology of these neurological disorders remains uncertain to this day, but it can be associated with the infiltration of tissue mastocytes, release of mastocytes' mediators or both. Moreover, there is a lot to understand about the role of neurological symptoms in SM and knowing, for example, what is the real frequency of neurological disorders in SM and if is present a relation between other SM subtypes, because it has been noted that the alteration of the histamine expression may be an initiating factor for susceptibility, gravity and progression of the epigenetic disease. In this review we explain the possible pathophysiological mechanism about neurological symptomatology found in some patients affected by SM, describing the role of histamine and its receptors in the nervous system and, in light of the results, what the future prospects may be for a more specific course of treatment.
Collapse
Affiliation(s)
- Paola Di Mauro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia" A.O.U. "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy.
| | | | | | - Davide Domenico Borzì
- University of Catania, Italy and Italian Federation of Sports Medicine (FMSI), Rome, Italy
| |
Collapse
|
4
|
Jendoubi F, Severino-Freire M, Negretto M, Arbus C, Paul C, Bulai Livideanu C. Neuropsychiatric, cognitive and sexual impairment in mastocytosis patients. Orphanet J Rare Dis 2021; 16:118. [PMID: 33673856 PMCID: PMC7934538 DOI: 10.1186/s13023-021-01747-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Mastocytosis is a rare disease characterised by the accumulation and/or proliferation of abnormal mast cells (MCs) in one or several organs. It may present with a number of different symptoms that involve various organ systems. The current study aims to assess the prevalence of MC mediator-related symptoms in a cohort of mastocytosis patients with a specific focus on neurological, psychiatric, cognitive and sexual symptoms. We also assessed the impact of the disease on patients’ professional lives. Patients were administered a validated multidimensional questionnaire to collect information on patients’ perception of the severity of their symptoms. From the questionnaires we extracted the neurological, cognitive, psychiatric and sexual symptoms and the impact of the disease on patients’ professional lives as well as their grading. The affective status was assessed using the 17-item version of the Hamilton Depression Rating Scale. Results We included 139 patients. Mastocytosis was classified as systemic in 113 patients and cutaneous in 26 patients. The prevalence of MC mediator-related systemic symptoms was as follows: cutaneous (71%), gastro-intestinal (48%), cardio-vascular (36%), musculoskeletal (26.6%), fatigue (24%), urinary (14.4%) and respiratory (10%). Headaches and vertigo were noted in respectively 55% and 32% of patients. Irritability, episodes of memory loss and difficulty concentrating were reported in 54%, 52% and 40% of cases, respectively. Sexual impairment was noted in 24% of patients. No associations were found between neuropsychiatric/cognitive impairment and age, gender, diagnostic delay, disease form, the presence of cutaneous lesions, the level of serum and bone marrow tryptase and the presence of KIT mutation in bone marrow and/or skin. Depression was noted in 49% of patients. One in four patients reported a negative impact of the disease on their professional lives. Conclusion This current study provides some insights regarding symptoms related to mastocytosis and their impact on patients’ professional lives.
Collapse
Affiliation(s)
- Fatma Jendoubi
- Mastocytosis National Expert Centre (CEREMAST), Department of Dermatology, Toulouse University Hospital, 24 Chemin de Pouvourville, 31059, Toulouse, France
| | - Maella Severino-Freire
- Mastocytosis National Expert Centre (CEREMAST), Department of Dermatology, Toulouse University Hospital, 24 Chemin de Pouvourville, 31059, Toulouse, France
| | - Mathilde Negretto
- Mastocytosis National Expert Centre (CEREMAST), Department of Dermatology, Toulouse University Hospital, 24 Chemin de Pouvourville, 31059, Toulouse, France
| | - Christophe Arbus
- Department of Psychiatry, Toulouse University Hospital, Tonic Inserm 1214, Toulouse, France
| | - Carle Paul
- Mastocytosis National Expert Centre (CEREMAST), Department of Dermatology, Toulouse University Hospital, 24 Chemin de Pouvourville, 31059, Toulouse, France
| | - Cristina Bulai Livideanu
- Mastocytosis National Expert Centre (CEREMAST), Department of Dermatology, Toulouse University Hospital, 24 Chemin de Pouvourville, 31059, Toulouse, France.
| |
Collapse
|
5
|
Tripathi GM, Tripathi S. Immunogenetics in Migraine. THE MOLECULAR IMMUNOLOGY OF NEUROLOGICAL DISEASES 2021:135-147. [DOI: 10.1016/b978-0-12-821974-4.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Talafi Noghani M, Namdar H. Migraine associated with gastrointestinal disorders: A pathophysiological explanation. Med Hypotheses 2019; 125:90-93. [PMID: 30902160 DOI: 10.1016/j.mehy.2019.02.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Migraine is a highly prevalent, disabling, and costly disorder worldwide. From a long time ago, headaches have been known to be associated with gastrointestinal (GI) disorders. Headaches originating from gastric complaints were appreciated by Persian Medicine (PM) scholars. Today, functional GI disorders are shown to have high comorbidity with migraines; however, a causal relationship is not accepted today and pathophysiological explanations for this comorbidity are scarce. Therefore, based on the PM philosophy and the existing evidence, we aimed to propose an explanation for the co-morbidity of migraine and GI disorders. SUMMARY Noxious stimuli from the GI tract are relayed to the nucleus tractus solitarius (NTS) in the brain stem, which is located close to the trigeminal nucleus caudalis (TNC). TNC has shown projections to (NTS) through which frequent GI stimuli may antidromically reach the TNC and finally result in neurogenic inflammation. In addition, immune products, particularly histamine, are released in the submucosa of the GI tract and absorbed into the systemic circulation, which renders migraineurs more prone to attacks.
Collapse
Affiliation(s)
- Majid Talafi Noghani
- Department of Iranian Traditional Medicine, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Hasan Namdar
- Department of Iranian Traditional Medicine, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Abstract
Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer.
Collapse
Affiliation(s)
- Kalpna Gupta
- Vascular Biology Center, Division of Hematology/Oncology/Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ilkka T Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol 2018; 40:301-314. [PMID: 29568973 DOI: 10.1007/s00281-018-0676-y] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of "sterile inflammation" in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Shelukhina I, Mikhailov N, Abushik P, Nurullin L, Nikolsky EE, Giniatullin R. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain. Front Neurol 2017; 8:163. [PMID: 28496430 PMCID: PMC5406407 DOI: 10.3389/fneur.2017.00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. METHODS Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. RESULTS Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. CONCLUSION Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which could be activated by the ACh released from parasympathetic nerves. These receptors represent a potential target for novel therapeutic interventions in trigeminal pain and probably in migraine.
Collapse
Affiliation(s)
- Irina Shelukhina
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita Mikhailov
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Polina Abushik
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leniz Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan, Russian Federation.,Open Laboratory of Neuropharmacology, Kazan Federal University, Kazan, Russian Federation
| | - Evgeny E Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan, Russian Federation.,Open Laboratory of Neuropharmacology, Kazan Federal University, Kazan, Russian Federation
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
10
|
Georgin-Lavialle S, Gaillard R, Moura D, Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders. Transl Res 2016; 174:77-85.e1. [PMID: 27063957 DOI: 10.1016/j.trsl.2016.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Patients with mastocytosis can display various disabling general and neuropsychological symptoms among one third of them, including general signs such as fatigue and musculoskeletal pain, which can have a major impact on quality of life. Neurological symptoms are less frequent and mainly consist of acute or chronic headache (35%), rarely syncopes (5%), acute onset back pain (4%), and in a few cases, clinical and radiological symptoms resembling or allowing the diagnosis of multiple sclerosis (1.3%). Headaches are associated with symptoms related to mast cell activation syndrome (flushes, prurit, and so forth) and more frequently present as migraine (37.5%), with often aura (66%). Depression-anxiety like symptoms can occur in 40% to 60% of the patients and cognitive impairment is not rare (38.6%). The pathophysiology of these symptoms could be linked to tissular mast cell infiltration or to mast cell mediators release or both. The tryptophan metabolism could be involved in mast cell-induced neuroinflammation through indoleamine-2,3-dioxygenase activation. Treatments targeting mast cell may be useful to target neuropsychological features associated with mastocytosis, including tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Sophie Georgin-Lavialle
- Service de médecine Interne, Hôpital Tenon, Université Pierre et Marie Curie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raphaël Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France; Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Daniela Moura
- Centre de référence des mastocytoses, Université Paris Descartes, Sorbonne, Paris Cité, Hôpital Necker Enfants malades, Paris, France
| | - Olivier Hermine
- Centre de référence des mastocytoses, Université Paris Descartes, Sorbonne, Paris Cité, Hôpital Necker Enfants malades, Paris, France; INSERM U1163 and CNRS ERL 8254 and Laboratory of Physiopathology and Treatment of Hematological Disorders Hôpital Necker-Enfants malades, Institut Imagine, Paris, France; Service d'hématologie adulte, Université Paris Descartes, Sorbonne, Paris Cité, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Hôpital Necker-Enfants malades, Paris, France.
| |
Collapse
|
11
|
Dussor G. ASICs as therapeutic targets for migraine. Neuropharmacology 2015; 94:64-71. [PMID: 25582295 PMCID: PMC4458434 DOI: 10.1016/j.neuropharm.2014.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023]
Abstract
Migraine is the most common neurological disorder and one of the most common chronic pain conditions. Despite its prevalence, the pathophysiology leading to migraine is poorly understood and the identification of new therapeutic targets has been slow. Several processes are currently thought to contribute to migraine including altered activity in the hypothalamus, cortical-spreading depression (CSD), and afferent sensory input from the cranial meninges. Decreased extracellular pH and subsequent activation of acid-sensing ion channels (ASICs) may contribute to each of these processes and may thus play a role in migraine pathophysiology. Although few studies have directly examined a role of ASICs in migraine, studies directly examining a connection have generated promising results including efficacy of ASIC blockers in both preclinical migraine models and in human migraine patients. The purpose of this review is to discuss the pathophysiology thought to contribute to migraine and findings that implicate decreased pH and/or ASICs in these events, as well as propose issues to be resolved in future studies of ASICs and migraine. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Greg Dussor
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, GR-41, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
12
|
Burgos-Vega C, Moy J, Dussor G. Meningeal afferent signaling and the pathophysiology of migraine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:537-64. [PMID: 25744685 DOI: 10.1016/bs.pmbts.2015.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.
Collapse
Affiliation(s)
- Carolina Burgos-Vega
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Jamie Moy
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Gregory Dussor
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
| |
Collapse
|
13
|
|
14
|
Yeom JS, Choi MB, Seo JH, Park JS, Lim JY, Park CH, Woo HO, Youn HS, Ko GH, Baik SC, Lee WK, Cho MJ, Rhee KH. Relationship between headache and mucosal mast cells in pediatric Helicobacter pylori-negative functional dyspepsia. Cephalalgia 2013; 33:323-9. [PMID: 23291287 DOI: 10.1177/0333102412472070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Although many patients with functional dyspepsia experience headache concurrently with dyspeptic symptoms, studies suggesting mechanisms underlying this phenomenon are limited. Herein, we explore the relationship between gastrointestinal inflammatory cells and presence of headache associated with dyspeptic symptoms in children with HELICOBACTER PYLORI -negative functional dyspepsia. METHODS Fifty-six patients with H. PYLORI -negative functional dyspepsia underwent upper endoscopy with biopsy to investigate recurrent epigastric pain or discomfort. Patients were divided into two groups according to self-reported presence of headache associated with dyspeptic symptoms. Inflammatory cells including mast cells, and enteroendocrine cells in the gastroduodenal mucosa were evaluated. Associations between headache presence and cellular changes in the gastroduodenal mucosa were examined. RESULTS Headache was not associated with the grade of lymphocytes, neutrophil infiltration, or enteroendocrine cell density in the gastroduedenal mucosa. However, headache was significantly associated with high mast cell density in the body (27.81 ± 8.71 vs. 20.30 ± 8.16, P < 0.01) and duodenum (23.16 ± 10.40 vs. 14.84 ± 5.88, P < 0.01). CONCLUSIONS Presence of headache associated with dyspeptic symptoms is strongly related to mucosal mast cell density in pediatric patients with H. PYLORI -negative functional dyspepsia. Thus, our results may help clinicians understand and treat headache during dyspeptic symptoms in such pediatric patients.
Collapse
Affiliation(s)
- Jung Sook Yeom
- Department of Pediatrics, Gyeongsang National University School of Medicine, Gyeongsang Institute of Health Science, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Current world literature. Curr Opin Pediatr 2012; 24:547-53. [PMID: 22790103 DOI: 10.1097/mop.0b013e3283566807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Boes T, Levy D. Influence of sex, estrous cycle, and estrogen on intracranial dural mast cells. Cephalalgia 2012; 32:924-31. [PMID: 22833613 DOI: 10.1177/0333102412454947] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The frequency of migraine headaches is higher in women than in men and in susceptible women attacks are related to changes in ovarian hormone levels. Intracranial mast cells (MCs) are likely to have a role in migraine headache genesis, and changes in the dural MC population might influence headache susceptibility. The present study thus tested the hypothesis that sex and ovarian hormones influence the density and phenotypic makeup of dural MCs. METHODS Histochemistry combined with quantitative analyses was used to investigate sex differences, estrous cycle and ovarian hormones on dural MC density, phenotype and degranulation level in male and female rats. RESULTS Our data show that in female rats, dural MC density fluctuates during the estrous cycle and is overall higher than in males. In ovariectomized rats, estradiol, but not progesterone, promoted an increase in dural MC density. This effect was abolished by a splenectomy, suggesting estrogen-related recruitment of MCs from the spleen. Finally, our data suggest that the phenotypic make up of dural MCs, which represents the level of cellular maturity, is also governed by changes in estrogen levels. CONCLUSIONS Given the potential role of dural MCs in triggering headache, our data suggest that estrogen-related modulation of dural MC density and phenotypic makeup could have a role in mediating the higher frequency and severity of headaches such as migraine, in women.
Collapse
Affiliation(s)
- Tanner Boes
- Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | | |
Collapse
|