1
|
Raffaelli B, Do TP, Ashina H, Snellman J, Maio-Twofoot T, Ashina M. Induction of cGMP-mediated migraine attacks is independent of CGRP receptor activation. Cephalalgia 2024; 44:3331024241259489. [PMID: 38850034 DOI: 10.1177/03331024241259489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND The cAMP and cGMP pathways are implicated in the initiation of migraine attacks, but their interactions remain unclear. Calcitonin gene-related peptide (CGRP) triggers migraine attacks via cAMP, whereas the phosphodiesterase-5 inhibitor sildenafil induces migraine attacks via cGMP. Our objective was to investigate whether sildenafil could induce migraine attacks in individuals with migraine pre-treated with the CGRP-receptor antibody erenumab. METHODS In this randomized, double-blind, placebo-controlled, cross-over study, adults with migraine without aura received a single subcutaneous injection of 140 mg erenumab on day 1. They were then randomized to receive sildenafil 100 mg or placebo on two experimental days, each separated by at least one week, between days 8 and 21. The primary endpoint was the difference in the incidence of migraine attacks between sildenafil and placebo during the 12-h observation period after administration. RESULTS In total, 16 participants completed the study. Ten participants (63%) experienced a migraine attack within 12 h after sildenafil administration compared to three (19%) after placebo (p = 0.016). The median headache intensity was higher after sildenafil than after placebo (area under the curve (AUC) for the 12-h observation period, p = 0.026). Furthermore, sildenafil induced a significant decrease in mean arterial blood pressure (AUC, p = 0.026) and a simultaneous increase in heart rate (AUC, p < 0.001) during the first hour after administration compared to placebo. CONCLUSION These findings provide evidence that migraine induction via the cGMP pathway can occur even under CGRP receptor blockade. TRIAL REGISTRATION ClinicalTrials.gov: Identifier NCT05889455.
Collapse
Affiliation(s)
- Bianca Raffaelli
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | | | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Calcitonin Gene-Related Peptide (CGRP) and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Migraine Pathogenesis. Pharmaceuticals (Basel) 2022; 15:ph15101189. [PMID: 36297301 PMCID: PMC9612382 DOI: 10.3390/ph15101189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a prevalent and debilitating neurologic disorder. Advancements in understanding the underlying pathophysiological mechanisms are spearheading the effort to introduce disease-specific treatment options. In recent years this effort has largely focused on alteration of endogenous neuropeptide signaling, namely the peptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Human studies into the pathophysiological underpinnings of CGRP and PACAP in migraine are manifold and here we review the works investigating these neuropeptides in patients suffering from migraine in order to elucidate the background for developing new treatment options for this vastly disabling disorder.
Collapse
|
4
|
Al-Karagholi MAM, Ghanizada H, Nielsen CAW, Ansari A, Gram C, Younis S, Vestergaard MB, Larsson HB, Skovgaard LT, Amin FM, Ashina M. Cerebrovascular effects of glibenclamide investigated using high-resolution magnetic resonance imaging in healthy volunteers. J Cereb Blood Flow Metab 2021; 41:1328-1337. [PMID: 33028147 PMCID: PMC8142144 DOI: 10.1177/0271678x20959294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glibenclamide inhibits sulfonylurea receptor (SUR), which regulates several ion channels including SUR1-transient receptor potential melastatin 4 (SUR1-TRPM4) channel and ATP-sensitive potassium (KATP) channel. Stroke upregulates SURl-TRPM4 channel, which causes a rapid edema formation and brain swelling. Glibenclamide may antagonize the formation of cerebral edema during stroke. Preclinical studies showed that glibenclamide inhibits KATP channel-induced vasodilation without altering the basal vascular tone. The in vivo human cerebrovascular effects of glibenclamide have not previously been investigated.In a randomized, double-blind, placebo-controlled, three-way cross-over study, we used advanced 3 T MRI methods to investigate the effects of glibenclamide and KATP channel opener levcromakalim on mean global cerebral blood flow (CBF) and intra- and extracranial artery circumferences in 15 healthy volunteers. Glibenclamide administration did not alter the mean global CBF and the basal vascular tone. Following levcromakalim infusion, we observed a 14% increase of the mean global CBF and an 8% increase of middle cerebral artery (MCA) circumference, and glibenclamide did not attenuate levcromakalim-induced vascular changes. Collectively, the findings demonstrate the vital role of KATP channels in cerebrovascular hemodynamic and indicate that glibenclamide does not inhibit the protective effects of KATP channel activation during hypoxia and ischemia-induced brain injury.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Hashmat Ghanizada
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Assan Ansari
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Christian Gram
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Samaria Younis
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Faculty of Health and Medical Sciences, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Rigshospitalet, Denmark
| | - Henrik Bw Larsson
- Functional Imaging Unit, Faculty of Health and Medical Sciences, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Rigshospitalet, Denmark
| | - Lene Theil Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Messoud Ashina
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark.,Danish Headache Knowledge Center, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
5
|
Abstract
The middle meningeal artery is a proposed surrogate marker for activation of trigeminal nociceptors during migraine. Previous studies focused on the extracranial part of the artery; hence, vasoreactivity in the intradural arteries during migraine is unknown. Thirty-four patients with migraine without aura were given sildenafil on one day and calcitonin gene-related peptide on another in double-blind crossover fashion. Patients were scanned with 3.0 T MR angiography before drug administration and again 6 hours later during induced attacks of migraine. We measured circumference of the intradural segment of the middle meningeal artery before and during induced migraine attacks. The middle cerebral and superficial temporal arteries were also examined. Fourteen patients had attacks during the second scan after both study drugs and 11 had a migraine after either one or the other, resulting in a total of 39 attacks included in the final analysis. Mean circumference of the intradural middle meningeal artery at baseline was 3.18 mm with an increase of 0.11 mm during attacks (P = 0.005), corresponding to a relative dilation of 3.6% [95% CI: 1.4%-5.7%]. Middle cerebral artery dilated by 9.4% [95% CI: 7.1%-11.7%] and superficial temporal artery by 2.3% [95% CI: 0.2%-4.4%]. Our study shows that the intradural middle meningeal artery and the middle cerebral artery are dilated during migraine induced by calcitonin gene-related peptide as well as sildenafil. We propose that intradural vasculature is affected by migraine-driven activation of trigeminal afferents during migraine attacks.
Collapse
|
6
|
Amyot F, Lynch CE, Ollinger J, Werner JK, Silverman E, Moore C, Davis C, Turtzo LC, Diaz-Arrastia R, Kenney K. Cerebrovascular Reactivity Measures Are Associated With Post-traumatic Headache Severity in Chronic TBI; A Retrospective Analysis. Front Physiol 2021; 12:649901. [PMID: 34054569 PMCID: PMC8155500 DOI: 10.3389/fphys.2021.649901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To characterize the relationship between persistent post-traumatic headache (pPTH) and traumatic cerebrovascular injury (TCVI) in chronic traumatic brain injury (TBI). Cerebrovascular reactivity (CVR), a measure of the cerebral microvasculature and endothelial cell function, is altered both in individuals with chronic TBI and migraine headache disorder (Amyot et al., 2017; Lee et al., 2019b). The pathophysiologies of pPTH and migraine are believed to be associated with chronic microvascular dysfunction. We therefore hypothesize that TCVI may contribute to the underlying migraine-like mechanism(s) of pPTH. MATERIALS AND METHODS 22 moderate/severe TBI participants in the chronic stage (>6 months) underwent anatomic and functional magnetic resonance imaging (fMRI) scanning with hypercapnia gas challenge to measure CVR as well as the change in CVR (ΔCVR) after single-dose treatment of a specific phosphodiesterase-5 (PDE-5) inhibitor, sildenafil, which potentiates vasodilation in response to hypercapnia in impaired endothelium, as part of a Phase2a RCT of sildenafil in chronic TBI (NCT01762475). CVR and ΔCVR measures of each participant were compared with the individual's pPTH severity measured by the headache impact test-6 (HIT-6) survey. RESULTS There was a moderate correlation between HIT-6 and both CVR and ΔCVR scores [Spearman's correlation = -0.50 (p = 0.018) and = 0.46 (p = 0.03), respectively], indicating that a higher headache burden is associated with decreased endothelial function in our chronic TBI population. CONCLUSION There is a correlation between PTH and CVR in chronic moderate-severe TBI. This relationship suggests that chronic TCVI may underlie the pathobiology of pPTH. Further, our results suggest that novel treatment strategies that target endothelial function and vascular health may be beneficial in refractory pPTH.
Collapse
Affiliation(s)
- Franck Amyot
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Cillian E. Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - J. Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - E. Silverman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Cora Davis
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - L. Christine Turtzo
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
7
|
Mason BN, Wattiez AS, Balcziak LK, Kuburas A, Kutschke WJ, Russo AF. Vascular actions of peripheral CGRP in migraine-like photophobia in mice. Cephalalgia 2020; 40:1585-1604. [PMID: 32811179 DOI: 10.1177/0333102420949173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Calcitonin gene-related peptide is recognized as a key player in migraine, yet the mechanisms and sites of calcitonin gene-related peptide action remain unknown. The efficacy of calcitonin gene-related peptide-blocking antibodies as preventative migraine drugs supports a peripheral site of action, such as the trigeminovasculature. Given the apparent disconnect between the importance of vasodilatory peptides in migraine and the prevailing opinion that vasodilation is an epiphenomenon, the goal of this study was to test whether vasodilation plays a role in calcitonin gene-related peptide-induced light aversive behavior in mice. METHODS Systemic mean arterial pressure and light aversive behavior were measured after intraperitoneal administration of calcitonin gene-related peptide and vasoactive intestinal peptide in wild-type CD1 mice. The functional significance of vasodilation was tested by co-administration of a vasoconstrictor (phenylephrine, endothelin-1, or caffeine) with calcitonin gene-related peptide to normalize blood pressure during the light aversion assay. RESULTS Both calcitonin gene-related peptide and vasoactive intestinal peptide induced light aversion that was associated with their effect on mean arterial pressure. Notably, vasoactive intestinal peptide caused relatively transient vasodilation and light aversion. Calcitonin gene-related peptide-induced light aversion was still observed even with normalized blood pressure. However, two of the agents, endothelin-1 and caffeine, did reduce the magnitude of light aversion. CONCLUSION We propose that perivascular calcitonin gene-related peptide causes light-aversive behavior in mice by both vasomotor and non-vasomotor mechanisms.
Collapse
Affiliation(s)
- Bianca N Mason
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Brain and Behavior Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, USA
| | - Louis K Balcziak
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Neuroscience Program, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - William J Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine and Francois M Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Tfelt‐Hansen P, Messlinger K. Why is the therapeutic effect of acute antimigraine drugs delayed? A review of controlled trials and hypotheses about the delay of effect. Br J Clin Pharmacol 2019; 85:2487-2498. [PMID: 31389059 PMCID: PMC6848898 DOI: 10.1111/bcp.14090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 08/04/2019] [Indexed: 01/02/2023] Open
Abstract
In randomised controlled trials (RCTs) of oral drug treatment of migraine attacks, efficacy is evaluated after 2 hours. The effect of oral naratriptan 2.5 mg with a maximum blood concentration (Tmax ) at 2 hours increases from 2 to 4 hours in RCTs. To check whether such a delayed effect is also present for other oral antimigraine drugs, we hand-searched the literature for publications on RCTs reporting efficacy. Two triptans, 3 nonsteroidal anti-inflammatory drugs (NSAIDs), a triptan combined with an NSAID and a calcitonin gene-related peptide receptor antagonist were evaluated for their therapeutic gain with determination of time to maximum effect (Emax ). Emax was compared with known Tmax from pharmacokinetic studies to estimate the delay to pain-free. The delay in therapeutic gain varied from 1-2 hours for zolmitriptan 5 mg to 7 hours for naproxen 500 mg. An increase in effect from 2 to 4 hours was observed after eletriptan 40 mg, frovatriptan 2.5 mg and lasmiditan 200 mg, and after rizatriptan 10 mg (Tmax = 1 h) from 1 to 2 hours. This strongly indicates a general delay of effect in oral antimigraine drugs. A review of 5 possible effects of triptans on the trigemino-vascular system did not yield a simple explanation for the delay. In addition, Emax for triptans probably depends partly on the rise in plasma levels and not only on its maximum. The most likely explanation for the delay in effect is that a complex antimigraine system with more than 1 site of action is involved.
Collapse
Affiliation(s)
- Peer Tfelt‐Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup HospitalUniversity of CopenhagenGlostrupDenmark
| | - Karl Messlinger
- Institute of Physiology and PathophysiologyFriedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
9
|
Abstract
Migraine is among the most common and most disabling disorders worldwide, yet its underlying pathophysiology is among the most poorly understood. New information continues to emerge on mechanisms within the central and peripheral nervous systems that may contribute to migraine attacks. Additionally, new therapeutics have recently become available and along with much needed relief for many patients, these drugs provide insight into the disorder based on their mechanism of action. This review will cover new findings within the last several years that add to the understanding of migraine pathophysiology, including those related to the vasculature, calcitonin gene-related peptide (CGRP), and mechanisms within the cortex and meninges that may contribute to attacks. Discussion will also cover recent findings on novel therapeutic targets, several of which continue to show promise in new preclinical studies, including acid-sensing ion channels (ASICs) and the delta-opioid receptor (DOR).
Collapse
Affiliation(s)
- Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
10
|
Al‐Karagholi MA, Ghanizada H, Hansen JM, Skovgaard LT, Olesen J, Larsson HBW, Amin FM, Ashina M. Levcromakalim, an Adenosine Triphosphate‐Sensitive Potassium Channel Opener, Dilates Extracerebral but not Cerebral Arteries. Headache 2019; 59:1468-1480. [DOI: 10.1111/head.13634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Hashmat Ghanizada
- Glostrup Research Park, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jakob M. Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Lene T. Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Glostrup Research Park, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Henrik B. W. Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Faisal M. Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
11
|
Christensen CE, Younis S, Lindberg U, Boer VO, de Koning P, Petersen ET, Paulson OB, Larsson HBW, Amin FM, Ashina M. Ultra-high field MR angiography in human migraine models: a 3.0 T/7.0 T comparison study. J Headache Pain 2019; 20:48. [PMID: 31060491 PMCID: PMC6734314 DOI: 10.1186/s10194-019-0996-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sildenafil and calcitonin gene-related peptide both dilate the intradural segments of the middle meningeal artery measured with 3.0 tesla (T) MR angiography. Here we hypothesized that an increase in field strength to 7.0 T and concomitant enhanced voxel resolution would lower variance in measurements of dilation in the intradural middle meningeal artery. METHODS Five subjects completed two sessions at respectively 3.0 T and 7.0 T. Each session comprised MR angiography scans once before and twice after administration of sildenafil, calcitonin gene-related peptide or placebo in a three-way, crossover, double-blind, placebo-controlled design. RESULTS Standard deviations of arterial circumference revealed no difference between 3.0 T and 7.0 T measurements (p = 0.379). We found a decrease in standard deviation from our original angiography analysis software (QMra) to a newer (LAVA) software package (p < 0.001). Furthermore, we found that the dilation after sildenafil and calcitonin gene-related peptide were comparable between 3.0 T and 7.0 T. CONCLUSIONS Our findings suggest no gain from the increase in voxel resolution but cemented dilatory findings from earlier. The implemented software update improved variance in circumference measurements in the intradural middle meningeal artery, which should be exploited in future studies. TRIAL REGISTRATION The study is part of a parent study, which is registered at ClinicalTrials.gov ( NCT03143465 ).
Collapse
Affiliation(s)
- Casper Emil Christensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Oltman Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Amager and Hvidovre Hospital, Copenhagen, Denmark
| | - Patrick de Koning
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Amager and Hvidovre Hospital, Copenhagen, Denmark.,Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Olaf Bjarne Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet Blegdamsvej, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark.
| |
Collapse
|