1
|
Tarantino D, Mottola R, Resta G, Gnasso R, Palermi S, Corrado B, Sirico F, Ruosi C, Aicale R. Achilles Tendinopathy Pathogenesis and Management: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6681. [PMID: 37681821 PMCID: PMC10487940 DOI: 10.3390/ijerph20176681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
The Achilles tendon is the thickest and strongest tendon of the human body, and it is frequently injured during sports activity. The incidence of Achilles tendon pathologies has increased over recent decades, especially in the last few years, because of increased sports participation among the general population and due to the diffusion of competitive sports at a high level. Tendinopathies are common in athletes and in middle-aged overweight patients. The term "tendinopathy" refers to a condition characterised clinically by pain and swelling, with functional limitations of tendon and nearby structures, and consequently to chronic failure of healing response process. Tendinopathies can produce marked morbidity, and at present, scientifically validated management modalities are limited. Despite the constantly increasing interest and number of studies about Achilles tendinopathy (AT), there is still not a consensual point of view on which is the best treatment, and its management is still controversial. AT can be treated conservatively primarily, with acceptable results and clinical outcomes. When this approach fails, surgery should be considered. Several surgical procedures have been described for both conditions with a relatively high rate of success with few complications and the decision for treatment in patients with AT should be tailored on patient's needs and level of activity. The aim of this article is to give insights about the pathogenesis and most used and recent treatment options for AT.
Collapse
Affiliation(s)
- Domiziano Tarantino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (R.M.); (R.G.); (S.P.); (B.C.); (F.S.); (C.R.)
| | - Rosita Mottola
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (R.M.); (R.G.); (S.P.); (B.C.); (F.S.); (C.R.)
| | - Giuseppina Resta
- Department of Orthopaedic and Trauma Surgery, Casa di Cura di Bernardini, 74121 Taranto, Italy;
| | - Rossana Gnasso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (R.M.); (R.G.); (S.P.); (B.C.); (F.S.); (C.R.)
| | - Stefano Palermi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (R.M.); (R.G.); (S.P.); (B.C.); (F.S.); (C.R.)
| | - Bruno Corrado
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (R.M.); (R.G.); (S.P.); (B.C.); (F.S.); (C.R.)
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (R.M.); (R.G.); (S.P.); (B.C.); (F.S.); (C.R.)
| | - Carlo Ruosi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (R.M.); (R.G.); (S.P.); (B.C.); (F.S.); (C.R.)
| | - Rocco Aicale
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, 84084 Baronissi, Italy;
| |
Collapse
|
2
|
Jiang Q, Wang L, Liu Z, Su J, Tang Y, Tan P, Zhu X, Zhang K, Ma X, Jiang J, Zhao J, Lin H, Zhang X. Canine ACL reconstruction with an injectable hydroxyapatite/collagen paste for accelerated healing of tendon-bone interface. Bioact Mater 2023; 20:1-15. [PMID: 35633878 PMCID: PMC9123091 DOI: 10.1016/j.bioactmat.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Healing of an anterior cruciate ligament (ACL) autologous graft in a bone tunnel occurs through the formation of fibrovascular scar tissue, which is structurally and compositionally inferior to normal fibrocartilaginous insertion and thus may increase the reconstruction failure and the rate of failure recurrence. In this study, an injectable hydroxyapatite/type I collagen (HAp/Col Ⅰ) paste was developed to construct a suitable local microenvironment to accelerate the healing of bone-tendon interface. Physicochemical characterization demonstrated that the HAp/Col Ⅰ paste was injectable, uniform and stable. The in vitro cell culture illustrated that the paste could promote MC3T3-E1 cells proliferation and osteogenic expression. The results of a canine ACL reconstruction study showed that the reconstructive ACL had similar texture and color as the native ACL. The average width of the tunnel, total bone volume, bone volume/tissue volume and trabecular number acquired from micro-CT analysis suggested that the healing of tendon-bone interface in experimental group was better than that in control group. The biomechanical test showed the maximal loads in experimental group achieved approximately half of native ACL's maximal load at 24 weeks. According to histological examination, Sharpey fibers could be observed as early as 12 weeks postoperatively while a typical four-layer transitional structure of insertion site was regenerated at 48 weeks in the experimental group. The injectable HAp/Col Ⅰ paste provided a biomimetic scaffold and microenvironment for early cell attachment and proliferation, further osteogenic expression and extracellular matrix deposition, and in vivo structural and functional regeneration of the tendon-bone interface. A stable and injectable HAp/Col I paste was designed, optimized and characterized. The paste was applied in ACL reconstruction with an established standard operation procedure. Provided the safety and efficacy evidence for ACL reconstruction, and healing of tendon-bone interface was accelerated.
Collapse
|
3
|
Guo X, Huang D, Li D, Zou L, Lv H, Wang Y, Tan M. Adipose-derived mesenchymal stem cells with hypoxic preconditioning improve tenogenic differentiation. J Orthop Surg Res 2022; 17:49. [PMID: 35090498 PMCID: PMC8796587 DOI: 10.1186/s13018-021-02908-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADSCs), as seed cells for tendon tissue engineering, are promising for tendon repair and regeneration. But for ADSCs, diverse oxygen tensions have different stimulatory effects. To explore this issue, we investigated the tenogenic differentiation capability of ADSCs under hypoxia condition (5% O2) and the possible signaling pathways correspondingly. The effects of different oxygen tensions on proliferation, migration, and tenogenic differentiation potential of ADSCs were investigated. Methods P4 ADSCs were divided into a hypoxic group and a normoxic group. The hypoxic group was incubated under a reduced O2 pressure (5% O2, 5% CO2, balanced N2). The normoxic group was cultured in 21% O2. Two groups were compared: HIF-1α inhibitor (2-MeOE2) in normoxic culturing conditions and hypoxic culturing conditions. Hypoxia-inducible factor-1α (HIF-1α) and VEGF were measured using RT-qPCR. Specific HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2) was applied to investigate whether HIF-1α involved in ADSCs tenogenesis under hypoxia. Results Hypoxia significantly reduced proliferation and migration of ADSCs. Continuous treatment of ADSCs at 5% O2 resulted in a remarkable decrease in HIF-1α expression in comparison with 20% O2. Additionally, ADSCs of hypoxia preconditioning exhibited higher mRNA expression levels of the related key tenogenic makers and VEGF than normoxia via RT-qPCR measurement (p ˂ 0.05). Furthermore, the effects of hypoxia on tenogenic differentiation of ADSCs were inhibited by 2-MeOE2. Hypoxia can also stimulate VEGF production in ADSCs. Conclusions Our findings demonstrate that hypoxia preconditioning attenuates the proliferation and migration ability of ADSCs, but has positive impact on tenogenic differentiation through HIF-1α signaling pathway.
Collapse
|
4
|
Hsu TH, Lin CL, Wu CW, Chen YW, Vitoonpong T, Lin LC, Huang SW. Accuracy of Critical Shoulder Angle and Acromial Index for Predicting Supraspinatus Tendinopathy. Diagnostics (Basel) 2022; 12:diagnostics12020283. [PMID: 35204373 PMCID: PMC8871498 DOI: 10.3390/diagnostics12020283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Critical shoulder angle (CSA) is the angle between the superior and inferior bony margins of the glenoid and the most lateral border of the acromion. The acromial index (AI) is the distance from the glenoid plane to the acromial lateral border and is divided by the distance from the glenoid plane to the lateral aspect of the humeral head. Although both are used for predicting shoulder diseases, research on their accuracy in predicting supraspinatus tendinopathy in patients with shoulder pain is limited. Data were retrospectively collected from 308 patients with supraspinatus tendinopathy between January 2018 and December 2019. Simultaneously, we gathered the data of 300 patients with shoulder pain without supraspinatus tendinopathy, confirmed through ultrasound examination. Baseline demographic data, CSA, and AI were compared using the independent Student’s t test and Mann–Whitney U test. Categorical variables were analyzed using the chi-square test. A receiver operating characteristic curve (ROC) analysis was performed to investigate the accuracy of CSA and AI for predicting supraspinatus tendinopathy, and the optimal cut-off point was determined using the Youden index. No statistical differences were observed for age, sex, body mass index, evaluated side (dominant), diabetes mellitus, and hyperlipidemia between the groups. The supraspinatus tendinopathy group showed higher CSAs (p < 0.001) than did the non-supraspinatus tendinopathy group. For predicting supraspinatus tendinopathy, the area under the curve (AUC) of ROC curve of the CSA was 76.8%, revealing acceptable discrimination. The AUC of AI was 46.9%, revealing no discrimination. Moreover, when patients with shoulder pain had a CSA > 38.11°, the specificity and sensitivity of CSA in predicting supraspinatus tendinopathy were 71.0% and 71.8%, respectively. CSA could be considered an objective assessment tool to predict supraspinatus tendinopathy in patients with shoulder pain. AI revealed no discrimination in predicting supraspinatus tendinopathy in patients with shoulder pain.
Collapse
Affiliation(s)
- Tzu-Herng Hsu
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (T.-H.H.); (C.-W.W.); (Y.-W.C.); (L.-C.L.)
| | - Che-Li Lin
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chin-Wen Wu
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (T.-H.H.); (C.-W.W.); (Y.-W.C.); (L.-C.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (T.-H.H.); (C.-W.W.); (Y.-W.C.); (L.-C.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Timporn Vitoonpong
- Rehabilitation Department, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand;
| | - Lien-Chieh Lin
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (T.-H.H.); (C.-W.W.); (Y.-W.C.); (L.-C.L.)
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (T.-H.H.); (C.-W.W.); (Y.-W.C.); (L.-C.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-222-490-088 (ext. 1602)
| |
Collapse
|
5
|
Lin CL, Chen YW, Wu CW, Liou TH, Huang SW. Effect of Hypertonic Dextrose Injection on Pain and Shoulder Disability in Patients with Chronic Supraspinatus Tendinosis: A Randomized Double-Blind Controlled Study. Arch Phys Med Rehabil 2021; 103:237-244. [PMID: 34610286 DOI: 10.1016/j.apmr.2021.07.812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To investigate the effect of hypertonic dextrose injection on pain and disability in patients with chronic supraspinatus tendinosis. The secondary aim was to evaluate its effect on the tendon range of motion (ROM) and morphology. DESIGN Randomized double-blind placebo-controlled trial. SETTING Outpatient clinic. PARTICIPANTS Individuals (N=57) with symptomatic chronic supraspinatus tendinosis. INTERVENTIONS Participants were randomly administered ultrasound-guided injections of 20% hypertonic dextrose (study group, n=29) or 5% normal saline (control group, n=28). MAIN OUTCOME MEASURES The primary outcome measure was visual analog scale (VAS) scores for pain and Shoulder Pain and Disability Index (SPADI) scores. Secondary outcomes included the ROM and ultrasound examination findings of the supraspinatus tendon at baseline and at 2, 6, and 12 weeks postintervention. RESULTS The study group exhibited significant improvements in the VAS (mean difference [MD], -2.1; 95% confidence interval [CI], -2.7 to -1.4; P<.001) and SPADI (MD, -11.6; 95% CI, -16.5 to -6.7; P<.001) scores compared with baseline scores at week 2. However, the effect was not sustained to week 6. Flexion ROM increased at weeks 2 (MD, 14.1; 95% CI, 5.7-22.5; P<.001) and 6 (MD, 8.9; 95% CI, 2.4-15.4; P=.003) compared with baseline. The thickness of the supraspinatus tendon improved at weeks 6 (MD, .50; 95% CI, .26-.74; P<.001) and 12 (MD, .61; 95% CI, .37-.84; P<.001) compared with baseline. The ratio of histograms also improved at weeks 6 (MD, .19; 95% CI, .06-.32; P=.002) and 12 (MD, .26; 95% CI, .10-.41; P<.001) compared with baseline. CONCLUSION Hypertonic dextrose injection could provide short-term pain and disability relief in patients with chronic supraspinatus tendinosis. Ultrasound imaging at week 6 revealed changed tendon morphology.
Collapse
Affiliation(s)
- Che-Li Lin
- From the Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Wen Wu
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Chung MJ, Son JY, Park S, Park SS, Hur K, Lee SH, Lee EJ, Park JK, Hong IH, Kim TH, Jeong KS. Mesenchymal Stem Cell and MicroRNA Therapy of Musculoskeletal Diseases. Int J Stem Cells 2021; 14:150-167. [PMID: 33377459 PMCID: PMC8138662 DOI: 10.15283/ijsc20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic effects of mesenchymal stem cells (MSCs) in musculoskeletal diseases (MSDs) have been verified in many human and animal studies. Although some tissues contain MSCs, the number of cells harvested from those tissues and rate of proliferation in vitro are not enough for continuous transplantation. In order to produce and maintain stable MSCs, many attempts are made to induce differentiation from pluripotent stem cells (iPSCs) into MSCs. In particular, it is also known that the paracrine action of stem cell-secreted factors could promote the regeneration and differentiation of target cells in damaged tissue. MicroRNAs (miRNAs), one of the secreted factors, are small non-coding RNAs that regulate the translation of a gene. It is known that miRNAs help communication between stem cells and their surrounding niches through exosomes to regulate the proliferation and differentiation of stem cells. While studies have so far been underway targeting therapeutic miRNAs of MSDs, studies on specific miRNAs secreted from MSCs are still minimal. Hence, our ultimate goal is to obtain sufficient amounts of exosomes from iPSC-MSCs and develop them into therapeutic agents, furthermore to select specific miRNAs and provide safe cell-free clinical setting as a cell-free status with purpose of delivering them to target cells. This review article focuses on stem cell therapy on MSDs, specific microRNAs regulating MSDs and updates on novel approaches.
Collapse
Affiliation(s)
- Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Soon-Seok Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Keun Hur
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Tae-Hwan Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
7
|
Depuydt E, Broeckx SY, Van Hecke L, Chiers K, Van Brantegem L, van Schie H, Beerts C, Spaas JH, Pille F, Martens A. The Evaluation of Equine Allogeneic Tenogenic Primed Mesenchymal Stem Cells in a Surgically Induced Superficial Digital Flexor Tendon Lesion Model. Front Vet Sci 2021; 8:641441. [PMID: 33748217 PMCID: PMC7973085 DOI: 10.3389/fvets.2021.641441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Tendon injuries are very common in horses and jeopardize the athletic performance, and due to the high risk of reinjury may lead to early retirement. The use of mesenchymal stem cells for the treatment of equine tendon disease is widely investigated because of their regenerative potential. The objective of this study is to investigate the safety and efficacy of equine allogeneic tenogenic primed mesenchymal stem cells (tpMSCs) for the management of tendinitis in horses. Methods: A core lesion was surgically induced in the superficial digital flexor tendon of both forelimbs of eight horses. After 7 days, one forelimb was treated with tpMSCs, while the contralateral forelimb served as an intra-individual control and was treated with saline. A prescribed exercise program was started. All horses underwent a daily clinical evaluation throughout the entire study period of 112 days. Blood samples were taken at different time points for hematological and biochemical analysis. Tendon assessment, lameness examination, ultrasound assessment and ultrasound tissue characterization (UTC) were performed at regular time intervals. At the end of the study period, the superficial digital flexor tendons were evaluated macroscopically and histologically. Results: No suspected or serious adverse events occurred during the entire study period. There was no difference in local effects including heat and pain to pressure between a single intralesional injection of allogeneic tpMSCs and a single intralesional injection with saline. A transient moderate local swelling was noted in the tpMSC treated limbs, which dissipated by day 11. Starting at a different time point depending on the parameter, a significant improvement was observed in the tpMSC treated limbs compared to the placebo for echogenicity score, fiber alignment score, anterior-posterior thickness of the tendon and echo type by UTC assessment. Immunohistochemistry 112 days post-injection revealed that the amount of collagen type I and Von Willebrand factor were significantly higher in the tendon tissue of the tpMSC group, while the amount of collagen type III and smooth muscle actin was significantly lower. Conclusion: Equine allogeneic tenogenic primed mesenchymal stem cells were shown to be well-tolerated and may be effective for the management of tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y Broeckx
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Lore Van Hecke
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans van Schie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Research and Development, UTC Imaging, Stein, Netherlands
| | - Charlotte Beerts
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Suzuki Y, Maeda N, Sasadai J, Kaneda K, Shirakawa T, Urabe Y. Ultrasonographic Evaluation of the Shoulders and Its Associations with Shoulder Pain, Age, and Swim Training in Masters Swimmers. MEDICINA (KAUNAS, LITHUANIA) 2020; 57:medicina57010029. [PMID: 33396219 PMCID: PMC7824457 DOI: 10.3390/medicina57010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Background and objectives: The long head of the biceps (LHB) and rotator cuff tendinopathy is the major cause of shoulder pain in competitive swimmers. The risk of tendinopathy increases with aging; however, the structural changes of LHB and rotator cuff in populations of masters swimmers have not been well examined. The purpose of this study was to investigate the prevalence of ultrasonographic abnormalities of the shoulders in masters swimmers, and the association of pain, age, and swim training with structural changes in this population. Materials and Methods: A total of 60 subjects participated in this study, with 20 masters swimmers with shoulder pain, 20 asymptomatic masters swimmers, and 20 sex- and age-matched controls. All swimmers completed a self-reported questionnaire for shoulder pain, their history of competition, and training volume. Each subject underwent ultrasonographic examination of both shoulders for pathologic findings in the LHB tendon, rotator cuff (supraspinatus (SSP) and subscapularis (SSC)) tendons, and subacromial bursa (SAB) of both shoulders and had thickness measured. Results: The prevalence of tendinosis (LHB, 48.8%; SSP, 17.5%; SSC, 15.9%), partial tear (SSP, 35.0%), and calcification (SSC, 10.0%) were higher in swimmers than in controls. LHB and SSP tendinosis were associated with shoulder pain. Older age and later start of competition were associated with an increased risk of LHB tendinosis and SSC calcification. Earlier initiation of swimming and longer history of competition were associated with an increased risk of SSP and SSC tendinosis. The thicker SSP tendon significantly increased the risk of tendinosis and partial tear. Conclusions: A high prevalence of structural changes in the rotator cuff and biceps tendons in masters swimmers reflects the effect of shoulder symptoms, aging, and swim training.
Collapse
Affiliation(s)
- Yuta Suzuki
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.S.); (N.M.); (K.K.)
- Department of Rehabilitation, Matterhorn Rehabilitation Hospital, Hiroshima 737-0046, Japan
| | - Noriaki Maeda
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.S.); (N.M.); (K.K.)
| | - Junpei Sasadai
- Sports Medical Center, Japan Institute of Sports Sciences, Tokyo 115-0056, Japan;
| | - Kazuki Kaneda
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.S.); (N.M.); (K.K.)
- Department of Rehabilitation, Koyo Orthopedic Clinic, Hiroshima 739-1733, Japan
| | - Taizan Shirakawa
- Department of Orthopedics, Matterhorn Rehabilitation Hospital, Hiroshima 737-0046, Japan;
| | - Yukio Urabe
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.S.); (N.M.); (K.K.)
- Correspondence: ; Tel.: +81-82-257-5405
| |
Collapse
|
9
|
Zhang Y, Deng XH, Lebaschi AH, Wada S, Carballo CB, Croen B, Ying L, Rodeo SA. Expression of alarmins in a murine rotator cuff tendinopathy model. J Orthop Res 2020; 38:2513-2520. [PMID: 32285963 DOI: 10.1002/jor.24690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the presence of alarmins in a novel murine rotator cuff tendinopathy model. Alarmins have been described as essential early activators of an immune response to tissue damage. Subacromial impingement was induced in both shoulders of 37 male C57Bl/6 mice by placement of a small metal clip in the subacromial space. Animals were allocated to different time points up to 6 weeks. The morphology and cellularity of the supraspinatus tendon were evaluated by hematoxylin-eosin staining, alcian blue, and picrosirius red. The expression and localization of alarmins interleukin-33 (IL-33), c (HMGB1), hypoxia-inducible factor-1 subunit α (HIF1α), and S100A9 were evaluated by immunohistochemical staining and quantitative polymerase chain reaction. The percentage of positively stained cells with HMGB1 and IL-33 was significantly increased in the impingement group at 1w, 4w, and 6w. HIF1α staining was higher in the impingement group at 1w and 6w compared with the control group. HMGB1 gene expression was higher in the 5d impingement group and 6w impingement group. The gene expression of HIF1α was upregulated at all-time points in the impingement group (5d, 2w, 4w, and 6w). The expression of the S100A9 gene was also upregulated in the 5d impingement group. This is the first study to demonstrate the involvement of alarmins in the early phase of tendinopathy using a reproducible animal model. Alarmins may play an important role in the early phases of the development of tendinopathy They may represent potential therapeutic targets for treatment of tendinopathy.
Collapse
Affiliation(s)
- Ying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Amir H Lebaschi
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Susumu Wada
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Camila B Carballo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Brett Croen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Liang Ying
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| |
Collapse
|
10
|
Virk MS, Luo W, Sikes KJ, Li J, Plaas A, Cole BJ. Gene expression profiling of progenitor cells isolated from rat rotator cuff musculotendinous junction. BMC Musculoskelet Disord 2020; 21:194. [PMID: 32222148 PMCID: PMC7102440 DOI: 10.1186/s12891-020-03190-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Background Rotator cuff tendon tears are typically degenerative and usually affect the region of tendon insertion on bone. The remnant torn tendon is degenerative and may not be an ideal source for progenitor cells for cell-based therapies. Therefore, the aim of this study was to determine if musculotendinous junction (MTJ), which is adjacent to tendon would be a viable alternate source of progenitor stem cells. We also sought to study the gene expression profile MTJ progenitors and compare it with progenitors isolated from RC tendon, RC muscle and other existing tissue sources (bone marrow, adipose tissue, and Achilles tendon). Methods Rotator cuff tendon (RCT), muscle (RCM), and RCMTJ as well as Achilles tendon (AT) tissues were harvested from healthy male Lewis rats and progenitor cultures were established from these tissues and also from bone marrow and adipose tissue. Quantitative RT-PCR was performed on RNA extracts from intact tissues and progenitor cells using a custom array for the mesenchymal stem cell (MSC) differentiation marker genes. The gene expression profile of MSC differentiation markers within four tissues types, six progenitor cells, and between tissue and their corresponding progenitors were compared. Results Progenitors cells can be isolated from rat rotator cuff musculotendinous tissue and their pattern of MSC gene expression was similar to the rotator cuff tendon progenitors for majority of the genes tested. However, there were significant differences between the MSC gene expression patterns of RCMTJ and RCM progenitors. Furthermore, there were differences in gene expression between the RCMTJ tissue and its progenitor cells with respect to MSC differentiation markers. The gene expression pattern of RCMTJ tissue was similar to RCM tissue with respect to markers of chondrogenesis, myogenesis, tenogenesis, and MSC specific markers. Conclusion We demonstrate that the musculotendinous junction contains distinct set of progenitor cells and their MSC gene expression pattern is similar to rotator cuff tendon progenitors. RCMTJ progenitors will be an attractive option for cell-based regenerative treatment of chronic rotator cuff tears.
Collapse
Affiliation(s)
- Mandeep S Virk
- Department of Orthopaedic Surgery, Division of Shoulder & Elbow, New York University Langone Orthopedic Hospital, 301 East 17th street, New York, 10003, NY, USA.
| | - Wei Luo
- Dept of Internal Medicine, Rush University Medical Center, 1735 W Harrison St Jelke 1302, Chicago, 60612, IL, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, Translational Medicine Institute, Fort Collins, 80523, CO, USA
| | - Jun Li
- Dept of Internal Medicine, Rush University Medical Center, 1735 W Harrison St Jelke 1302, Chicago, 60612, IL, USA
| | - Anna Plaas
- Dept of Internal Medicine, Rush University Medical Center, 1735 W Harrison St Jelke 1302, Chicago, 60612, IL, USA
| | - Brian J Cole
- Department of Orthopaedic Surgery, Sports and Shoulder and Elbow Division, Midwest Orthopaedics at Rush University, 1611 West Harrison Suite 300, Chicago, IL, USA
| |
Collapse
|
11
|
Copper Does Not Induce Tenogenic Differentiation but Promotes Migration and Increases Lysyl Oxidase Activity in Adipose-Derived Mesenchymal Stromal Cells. Stem Cells Int 2020; 2020:9123281. [PMID: 32148523 PMCID: PMC7053469 DOI: 10.1155/2020/9123281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Background Copper belongs to the essential trace metals that play a key role in the course of cellular processes maintaining the whole body's homeostasis. As there is a growing interest in transplanting mesenchymal stromal cells (MSCs) into the site of injury to improve the regeneration of damaged tendons, the purpose of the study was to verify whether copper supplementation may have a positive effect on the properties of human adipose tissue-derived MSCs (hASCs) which potentially can contribute to improvement of tendon healing. Results Cellular respiration of hASCs decreased with increasing cupric sulfate concentrations after 5 days of incubation. The treatment with CuSO4 did not positively affect the expression of genes associated with tenogenesis (COL1α1, COL3α1, MKX, and SCX). However, the level of COL1α1 protein, whose transcript was decreased in comparison to a control, was elevated after a 5-day exposition to 25 μM CuSO4. The content of the MKX and SCX protein in hASCs exposed to cupric sulfate was reduced compared to that of untreated control cells, and the level of the COL3α1 protein, whose transcript was decreased in comparison to a control, was elevated after a 5-day exposition to 25 μM CuSO4. The content of the MKX and SCX protein in hASCs exposed to cupric sulfate was reduced compared to that of untreated control cells, and the level of the COL3. Conclusion Copper sulfate supplementation can have a beneficial effect on tendon regeneration not by inducing tenogenic differentiation, but by improving the recruitment of MSCs to the site of injury, where they can secrete growth factors, cytokines and chemokines, and prevent the effects of oxidative stress at the site of inflammation, as well as improve the stabilization of collagen fibers, thereby accelerating the process of tendon healing.
Collapse
|
12
|
Robinson PG, Murray IR, Maempel J, Rankin CS, Hamilton D, Gaston P. Use of Biologics as an Adjunct Therapy to Arthroscopic Surgery for the Treatment of Femoroacetabular Impingement: A Systematic Review. Orthop J Sports Med 2019; 7:2325967119890673. [PMID: 31909055 PMCID: PMC6937539 DOI: 10.1177/2325967119890673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There has been a recent increase in the use of biologics in hip arthroscopy to assist in the management of femoroacetabular impingement (FAI). PURPOSE To analyze the current use of biologics for the treatment of FAI and its associated lesions. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS A search of the PubMed, Medline, and EMBASE databases was performed in March 2019 with use of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The criterion for inclusion was observational, published research articles studying the therapeutic use of biologics as an adjuvant therapy during arthroscopic surgery for FAI; treatments included bone marrow aspirate concentrate, mesenchymal stem cells (MSCs), platelet-rich plasma (PRP), hyaluronic acid, growth factors, and autologous chondrocyte implantation (ACI) or autologous matrix-induced chondrogenesis (AMIC). RESULTS There were 9 studies that met the inclusion criteria, and a total of 674 patients were included across all studies. FAI was studied in all articles. Further, 7 studies (78%) also analyzed chondral injuries, and 3 studies also analyzed labral tears (33%). ACI or AMIC was used in 56% of studies and showed superior functional outcomes at short- and midterm follow-up versus debridement or microfracture. PRP did not improve the outcome of labral repairs at short-term follow-up. CONCLUSION The current literature regarding biologic adjuncts in hip arthroscopy is varied in quality, with only one level 1 study. The use of ACI/AMIC for medium-sized chondral lesions showed promising results in individual studies; however, these were of lower quality. To enable comparisons among future studies, investigators must ensure accuracy in the reporting of biologic preparations and formulations used and homogeneity in the type and severity of lesion treated.
Collapse
Affiliation(s)
- Patrick G. Robinson
- Department of Trauma and Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - Iain R. Murray
- Department of Trauma and Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - Julian Maempel
- Department of Orthopaedic Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Conor S. Rankin
- Department of Trauma and Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - David Hamilton
- Department of Trauma and Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - Paul Gaston
- Department of Trauma and Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Abstract
In the last few decades, several techniques have been used to optimize tendon, ligament, and musculoskeletal healing. The evidence in favor of these techniques is still not proven, and level I studies are lacking. We performed an analysis of the therapeutic strategies and tissue engineering projects recently published in this field. Here, we try to give an insight into the current status of cell therapies and the latest techniques of bioengineering applied to the field of orthopedic surgery. The future areas for research in the management of musculoskeletal injuries are outlined. There are emerging technologies developing into substantial clinical treatment options that need to be critically evaluated. Mechanical stimulation of the constructs reproduces a more propitious environment for effective healing.
Collapse
|
14
|
Jancuska J, Matthews J, Miller T, Kluczynski MA, Bisson LJ. A Systematic Summary of Systematic Reviews on the Topic of the Rotator Cuff. Orthop J Sports Med 2018; 6:2325967118797891. [PMID: 30320144 PMCID: PMC6154263 DOI: 10.1177/2325967118797891] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The number of systematic reviews and meta-analyses published on the rotator cuff (RC) has increased markedly. PURPOSE To quantify the number of systematic reviews and meta-analyses published on the RC and to provide a qualitative summary of the literature. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS A systematic search for all systematic reviews and meta-analyses pertaining to the RC published between January 2007 and September 2017 was performed with PubMed, MEDLINE, and the Cochrane Database of Systematic Reviews. Narrative reviews and non-English language articles were excluded. RESULTS A total of 1078 articles were found, of which 196 met the inclusion criteria. Included articles were summarized and divided into 15 topics: anatomy and function, histology and genetics, diagnosis, epidemiology, athletes, nonoperative versus operative treatment, surgical repair methods, concomitant conditions and surgical procedures, RC tears after total shoulder arthroplasty, biological augmentation, postoperative rehabilitation, outcomes and complications, patient-reported outcome measures, cost-effectiveness of RC repair, and quality of randomized controlled trials. CONCLUSION A qualitative summary of the systematic reviews and meta-analyses published on the RC can provide surgeons with a single source of the most current literature.
Collapse
Affiliation(s)
- Jeffrey Jancuska
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - John Matthews
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - Tyler Miller
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - Melissa A. Kluczynski
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - Leslie J. Bisson
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
15
|
Yang QQ, Shao YX, Zhang LZ, Zhou YL. Therapeutic strategies for flexor tendon healing by nanoparticle-mediated co-delivery of bFGF and VEGFA genes. Colloids Surf B Biointerfaces 2018; 164:165-176. [DOI: 10.1016/j.colsurfb.2018.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/10/2023]
|
16
|
Sevivas N, Teixeira FG, Portugal R, Direito-Santos B, Espregueira-Mendes J, Oliveira FJ, Silva RF, Sousa N, Sow WT, Nguyen LTH, Ng KW, Salgado AJ. Mesenchymal Stem Cell Secretome Improves Tendon Cell Viability In Vitro and Tendon-Bone Healing In Vivo When a Tissue Engineering Strategy Is Used in a Rat Model of Chronic Massive Rotator Cuff Tear. Am J Sports Med 2018; 46:449-459. [PMID: 29053925 DOI: 10.1177/0363546517735850] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Massive rotator cuff tears (MRCTs) represent a major clinical concern, especially when degeneration and chronicity are involved, which highly compromise healing capacity. PURPOSE To study the effect of the secretome of mesenchymal stem cells (MSCs) on tendon cells (TCs) followed by the combination of these activated TCs with an electrospun keratin-based scaffold to develop a tissue engineering strategy to improve tendon-bone interface (TBi) healing in a chronic MRCT rat model. STUDY DESIGN Controlled laboratory study. METHODS Human TCs (hTCs) cultured with the human MSCs (hMSCs) secretome (as conditioned media [CM]) were combined with keratin electrospun scaffolds and further implanted in a chronic MRCT rat model. Wistar-Han rats (N = 15) were randomly assigned to 1 of 3 groups: untreated lesion (MRCT group, n = 5), lesion treated with a scaffold only (scaffold-only group, n = 5), and lesion treated with a scaffold seeded with hTCs preconditioned with hMSCs-CM (STC_hMSC_CM group, n = 5). After sacrifice, 16 weeks after surgery, the rotator cuff TBi was harvested for histological analysis and biomechanical testing. RESULTS The hMSCs secretome increased hTCs viability and density in vitro. In vivo, a significant improvement of the tendon maturing score was observed in the STC_hMSC_CM group (mean ± standard error of the mean, 15.6 ± 1.08) compared with the MRCT group (11.0 ± 1.38; P < .05). Biomechanical tests revealed a significant increase in the total elongation to rupture (STC_hMSC_CM, 11.99 ± 3.30 mm; scaffold-only, 9.89 ± 3.47 mm; MRCT, 5.86 ± 3.16 mm; P < .05) as well as a lower stiffness (STC_hMSC_CM, 6.25 ± 1.74 N/mm; scaffold-only, 6.72 ± 1.28 N/mm; MRCT, 11.54 ± 2.99 N/mm; P < .01). CONCLUSION The results demonstrated that hMSCs-CM increased hTCs viability and density in vitro. Clear benefits also were observed when these primed cells were integrated into a tissue engineering strategy with an electrospun keratin scaffold, as evidenced by improved histological and biomechanical properties for the STC_hMSC_CM group compared with the MRCT group. CLINICAL RELEVANCE This work supports further investigation into the use of MSC secretome for priming TCs toward a more differentiated phenotype, and it promotes the tissue engineering strategy as a promising modality to help improve treatment outcomes for chronic MRCTs.
Collapse
Affiliation(s)
- Nuno Sevivas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Orthopaedics Department, Hospital de Braga and Hospital Privado de Braga, Braga, Portugal.,Clínica Espregueira-Mendes, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal
| | - Fábio Gabriel Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Bruno Direito-Santos
- Orthopaedics Department, Hospital de Braga and Hospital Privado de Braga, Braga, Portugal
| | - João Espregueira-Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clínica Espregueira-Mendes, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal.,3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - Filipe J Oliveira
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rui F Silva
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Wan Ting Sow
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Luong T H Nguyen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Beerts C, Suls M, Broeckx SY, Seys B, Vandenberghe A, Declercq J, Duchateau L, Vidal MA, Spaas JH. Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses. Front Vet Sci 2017; 4:158. [PMID: 29018808 PMCID: PMC5622984 DOI: 10.3389/fvets.2017.00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Poor healing of tendon and ligament lesions often results in early retirement of sport horses. Therefore, regenerative therapies are being explored as potentially promising treatment for these injuries. In this study, an intralesional injection was performed with allogeneic tenogenically induced mesenchymal stem cells and platelet-rich plasma 5-6 days after diagnosis of suspensory ligament (SL) (n = 68) or superficial digital flexor tendon (SDFT) (n = 36) lesion. Clinical, lameness and ultrasonographic evaluation was performed at 6 and 12 weeks. Moreover, a survey was performed 12 and 24 months after treatment to determine how many horses were competing at original level and how many were re-injured. At 6 weeks, 88.2% of SL (n = 68) and 97.3% of SDFT lesions (n = 36) demonstrated moderate ultrasonographic improvement. At 12 weeks, 93.1% of SL (n = 29) and 95.5% of SDFT lesions (n = 22) improved convincingly. Moreover, lameness was abolished in 78.6% of SL (n = 28) and 85.7% (n = 7) of SDFT horses at 12 weeks. After 12 months (n = 92), 11.8% of SL and 12.5% of SDFT horses were re-injured, whereas 83.8 of SL and 79.2% of SDFT returned to previous performance level. At 24 months (n = 89) after treatment, 82.4 (SL) and 85.7% (SDFT) of the horses returned to previous level of performance. A meta-analysis was performed on relevant published evidence evaluating re-injury 24 months after stem cell-based [17.6% of the SL and 14.3% of the SDFT group (n = 89)] versus conventional therapies. Cell therapies resulted in a significantly lower re-injury rate of 18% [95% confidence interval (CI), 0.11-0.25] 2 years after treatment compared to the 44% re-injury rate with conventional treatments (95% CI, 0.37-0.51) based on literature data (P < 0.0001).
Collapse
Affiliation(s)
| | - Marc Suls
- Equine Veterinary Practice Dr. Suls, Nederweert, Netherlands
| | - Sarah Y Broeckx
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium
| | - Bert Seys
- Equine Veterinary Practice Dr. Suls, Nederweert, Netherlands
| | | | | | - Luc Duchateau
- Faculty of Veterinary Medicine, Department of Comparative Physiology and Biometrics, Ghent University, Merelbeke, Belgium
| | - Martin A Vidal
- Cave Creek Equine Surgical & Imaging Center, Phoenix, AZ, United States
| | - Jan H Spaas
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium
| |
Collapse
|
18
|
Abstract
Tendons connect muscles to bones, ensuring joint movement. With advanced age, tendons become more prone to degeneration followed by injuries. Tendon repair often requires lengthy periods of rehabilitation, especially in elderly patients. Existing medical and surgical treatments often fail to regain full tendon function. The development of novel treatment methods has been hampered due to limited understanding of basic tendon biology. Recently, it was discovered that tendons, similar to other mesenchymal tissues, contain tendon stem/progenitor cells (TSPCs) which possess the common stem cell properties. The current strategies for enhancing tendon repair consist mainly of applying stem cells, growth factors, natural and artificial biomaterials alone or in combination. In this review, we summarise the basic biology of tendon tissues and provide an update on the latest repair proposals for tendon tears.
Cite this article: EFORT Open Rev 2017;2:332-342. DOI: 10.1302/2058-5241.2.160075
Collapse
Affiliation(s)
- Fan Wu
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany and Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Pas HIMFL, Moen MH, Haisma HJ, Winters M. No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br J Sports Med 2017; 51:996-1002. [PMID: 28077355 DOI: 10.1136/bjsports-2016-096794] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Stem cells have emerged as a new treatment option for tendon disorders. We systematically reviewed the current evidence for stem cell therapy in tendon disorders. METHODS Randomised and non-randomised controlled trials, cohort studies and case series with a minimum of 5 cases were searched in MEDLINE, CENTRAL, EMBASE, CINAHL, PEDro and SPORTDiscus. In addition, we searched grey literature databases and trial registers. Only human studies were included and no time or language restrictions were applied to our search. All references of included trials were checked for possibly eligible trials. Risk of bias assessment was performed using the Cochrane risk of bias tool for controlled trials and the Newcastle-Ottawa scale for case series. Levels of evidence were assigned according to the Oxford levels of evidence. RESULTS 4 published and three unpublished/pending trials were found with a total of 79 patients. No unpublished data were available. Two trials evaluated bone marrow-derived stem cells in rotator cuff repair surgery and found lower retear rates compared with historical controls or the literature. One trial used allogenic adipose-derived stem cells to treat lateral epicondylar tendinopathy. Improved Mayo Elbow Performance Index, Visual Analogue Pain scale and ultrasound findings after 1-year follow-up compared with baseline were found. Bone marrow-derived stem cell-treated patellar tendinopathy showed improved International Knee Documentation Committee, Knee injury and Osteoarthritis Outcome Score subscales and Tegner scores after 5-year follow-up. One trial reported adverse events and found them to be mild (eg, swelling, effusion). All trials were at high risk of bias and only level 4 evidence was available. CONCLUSIONS No evidence (level 4) was found for the therapeutic use of stem cells for tendon disorders. The use of stem cell therapy for tendon disorders in clinical practice is currently not advised.
Collapse
Affiliation(s)
- Haiko I M F L Pas
- The Sports Physician Group, Department of Sports Medicine, OLVG West, Amsterdam, The Netherlands.,Department of Orthopaedic Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - Maarten H Moen
- The Sports Physician Group, Department of Sports Medicine, OLVG West, Amsterdam, The Netherlands.,Bergman Clinics, Naarden, The Netherlands.,Department of Elite Sports, NOC*NSF, Medical Staff, Arnhem, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen University, Groningen, The Netherlands
| | - Marinus Winters
- Rehabilitation, Nursing Science and Sports Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Sevivas N, Teixeira FG, Portugal R, Araújo L, Carriço LF, Ferreira N, Vieira da Silva M, Espregueira-Mendes J, Anjo S, Manadas B, Sousa N, Salgado AJ. Mesenchymal Stem Cell Secretome: A Potential Tool for the Prevention of Muscle Degenerative Changes Associated With Chronic Rotator Cuff Tears. Am J Sports Med 2017; 45:179-188. [PMID: 27501832 DOI: 10.1177/0363546516657827] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Massive rotator cuff tears (MRCTs) are usually chronic lesions with pronounced degenerative changes, where advanced fatty degeneration and atrophy can make the tear irreparable. Human mesenchymal stem cells (hMSCs) secrete a range of growth factors and vesicular systems, known as secretome, that mediates regenerative processes in tissues undergoing degeneration. PURPOSE To study the effect of hMSC secretome on muscular degenerative changes and shoulder function on a rat MRCT model. STUDY DESIGN Controlled laboratory study. METHODS A bilateral 2-tendon (supraspinatus and infraspinatus) section was performed to create an MRCT in a rat model. Forty-four Wistar-Han rats were randomly assigned to 6 groups: control group (sham surgery), lesion control group (MRCT), and 4 treated-lesion groups according to the site and periodicity of hMSC secretome injection: single local injection, multiple local injections, single systemic injection, and multiple systemic injections. Forelimb function was analyzed with the staircase test. Atrophy and fatty degeneration of the muscle were evaluated at 8 and 16 weeks after injury. A proteomic analysis was conducted to identify the molecules present in the hMSC secretome that can be associated with muscular degeneration prevention. RESULTS When untreated for 8 weeks, the MRCT rats exhibited a significantly higher fat content (0.73% ± 0.19%) compared with rats treated with a single local injection (0.21% ± 0.04%; P < .01) or multiple systemic injections (0.25% ± 0.10%; P < .05) of hMSC secretome. At 16 weeks after injury, a protective effect of the secretome in the multiple systemic injections (0.62% ± 0.14%; P < .001), single local injection (0.76% ± 0.17%; P < .001), and multiple local injections (1.35% ± 0.21%; P < .05) was observed when compared with the untreated MRCT group (2.51% ± 0.42%). Regarding muscle atrophy, 8 weeks after injury, only the single local injection group (0.0993% ± 0.0036%) presented a significantly higher muscle mass than that of the untreated MRCT group (0.0794% ± 0.0047%; P < .05). Finally, the proteomic analysis revealed the presence of important proteins with muscle regeneration, namely, pigment epithelium-derived factor and follistatin. CONCLUSION The study data suggest that hMSC secretome effectively decreases the fatty degeneration and atrophy of the rotator cuff muscles. CLINICAL RELEVANCE We describe a new approach for decreasing the characteristic muscle degeneration associated with chronic rotator cuff tears. This strategy is particularly important for patients whose tendon healing after later surgical repair could be compromised by the progressing degenerative changes. In addition, both precise intramuscular local injection and multiple systemic secretome injections have been shown to be promising delivery forms for preventing muscle degeneration.
Collapse
Affiliation(s)
- Nuno Sevivas
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Orthopaedics Department, Hospital de Braga, Braga, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal
| | - Fábio Gabriel Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Portugal
- Pathology Department, Centro Hospitalar São João, Porto, Portugal
| | - Luís Araújo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Nuno Ferreira
- Orthopaedics Department, Hospital de Braga, Braga, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal
| | - Manuel Vieira da Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Orthopaedics Department, Hospital de Braga, Braga, Portugal
| | - João Espregueira-Mendes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - Sandra Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal Biocant-Biotechnology Innovation Center, Cantanhede, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Kuemmerle JM, Theiss F, Okoniewski MJ, Weber FA, Hemmi S, Mirsaidi A, Richards PJ, Cinelli P. Identification of Novel Equine (Equus caballus) Tendon Markers Using RNA Sequencing. Genes (Basel) 2016; 7:genes7110097. [PMID: 27834918 PMCID: PMC5126783 DOI: 10.3390/genes7110097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Although several tendon-selective genes exist, they are also expressed in other musculoskeletal tissues. As cell and tissue engineering is reliant on specific molecular markers to discriminate between cell types, tendon-specific genes need to be identified. In order to accomplish this, we have used RNA sequencing (RNA-seq) to compare gene expression between tendon, bone, cartilage and ligament from horses. We identified several tendon-selective gene markers, and established eyes absent homolog 2 (EYA2) and a G-protein regulated inducer of neurite outgrowth 3 (GPRIN3) as specific tendon markers using RT-qPCR. Equine tendon cells cultured as three-dimensional spheroids expressed significantly greater levels of EYA2 than GPRIN3, and stained positively for EYA2 using immunohistochemistry. EYA2 was also found in fibroblast-like cells within the tendon tissue matrix and in cells localized to the vascular endothelium. In summary, we have identified EYA2 and GPRIN3 as specific molecular markers of equine tendon as compared to bone, cartilage and ligament, and provide evidence for the use of EYA2 as an additional marker for tendon cells in vitro.
Collapse
Affiliation(s)
- Jan M Kuemmerle
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Felix Theiss
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Michal J Okoniewski
- Scientific IT Services, Swiss Federal Institute of Technology, CH 8092 Zurich, Switzerland.
| | - Fabienne A Weber
- Institute of Laboratory Animal Science, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Sonja Hemmi
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | - Ali Mirsaidi
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Peter J Richards
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Paolo Cinelli
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| |
Collapse
|
23
|
|
24
|
Oshita T, Tobita M, Tajima S, Mizuno H. Adipose-Derived Stem Cells Improve Collagenase-Induced Tendinopathy in a Rat Model. Am J Sports Med 2016; 44:1983-9. [PMID: 27159294 DOI: 10.1177/0363546516640750] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendinopathy is a common and highly prevalent musculoskeletal disorder characterized by repetitive activity-related pain and focal tendon tenderness. Histopathologically, tendinopathic tissue mainly shows degenerative changes. Therefore, tendinopathy is not affected by anti-inflammatory therapies. A novel approach, including a stem cell-based therapy, may be beneficial for its treatment. PURPOSE/HYPOTHESIS The purpose of this study was to evaluate the effects of adipose-derived stem cells (ASCs) on tendon healing in a rat tendinopathy model. The hypothesis was that ASC transplantation would improve degeneration in collagenase-induced tendinopathy. STUDY DESIGN Controlled laboratory study. METHODS Sixteen F344/NSlc rats underwent collagenase injection into the Achilles tendon to induce tendinopathy. At 1 week after collagenase injection, 8 rats received ASCs (ASC group) and 8 received phosphate-buffered saline alone (PBS group). Animals were sacrificed at 4 or 12 weeks after ASC administration, and the degree of degeneration in each tendon was histologically evaluated according to the Bonar scale. The microstructure of healing tendons was observed by scanning electron microscopy. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to measure the ratio of type III collagen messenger RNA (mRNA) to type I collagen mRNA in tendons. RESULTS The median Bonar scale score in the ASC and PBS groups was 2.5 and 5.33 at 4 weeks after treatment and 1.0 and 4.0 at 12 weeks after treatment, respectively. Histologically, the ASC group showed a significantly lower degree of tendon degeneration than the PBS group at both time points. In the RT-PCR analysis, the ratio of type III collagen to type I collagen was significantly lower in the ASC group than in the PBS group at 12 weeks after treatment. Moreover, this ratio decreased over time in the ASC group, whereas it increased over time in the PBS group. CONCLUSION The study findings demonstrate that the application of ASCs results in significant improvement in the pathological findings associated with tendinopathy and the normalization of collagen ratios within the affected tendon. CLINICAL RELEVANCE Subcutaneous adipose tissue can be harvested easily, and ASC administration might have the potential to rapidly treat tendinopathy.
Collapse
Affiliation(s)
- Takashi Oshita
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan Department of Orthopaedic Surgery, Japan Self Defense Force Hospital Yokosuka, Yokosuka, Japan
| | - Morikuni Tobita
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Tajima
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan Department of Dental Surgery, Japan Self Defense Force Hospital Yokosuka, Yokosuka, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Wu PIK, Meleger A, Witkower A, Mondale T, Borg-Stein J. Nonpharmacologic Options for Treating Acute and Chronic Pain. PM R 2015; 7:S278-S294. [DOI: 10.1016/j.pmrj.2015.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022]
|
26
|
Cyclic Tensile Strain Induces Tenogenic Differentiation of Tendon-Derived Stem Cells in Bioreactor Culture. BIOMED RESEARCH INTERNATIONAL 2015; 2015:790804. [PMID: 26229962 PMCID: PMC4502284 DOI: 10.1155/2015/790804] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/24/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022]
Abstract
Different loading regimens of cyclic tensile strain impose different effects on cell proliferation and tenogenic differentiation of TDSCs in three-dimensional (3D) culture in vitro, which has been little reported in previous literatures. In this study we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation in the custom-designed 3D tensile bioreactor, which revealed that cyclic tensile strain with different frequencies (0.3 Hz, 0.5 Hz, and 1.0 Hz) and amplitudes (2%, 4%, and 8%) had no influence on TDSC viability, while it had different effects on the proliferation and the expression of type I collagen, tenascin-C, tenomodulin, and scleraxis of TDSCs, which was most obvious at 0.5 Hz frequency with the same amplitude and at 4% amplitude with the same frequency. Moreover, signaling pathway from microarray analysis revealed that reduced extracellular matrix (ECM) receptor interaction signaling initiated the tendon genius switch. Cyclic tensile strain highly upregulated genes encoding regulators of NPM1 and COPS5 transcriptional activities as well as MYC related transcriptional factors, which contributed to cell proliferation and differentiation. In particular, the transcriptome analysis provided certain new insights on the molecular and signaling networks for TDSCs loaded in these conditions.
Collapse
|
27
|
Abstract
Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management.
Collapse
|
28
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
29
|
Atesok K, Fu FH, Wolf MR, Ochi M, Jazrawi LM, Doral MN, Lubowitz JH, Rodeo SA. Augmentation of tendon-to-bone healing. J Bone Joint Surg Am 2014; 96:513-21. [PMID: 24647509 DOI: 10.2106/jbjs.m.00009] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tendon-to-bone healing is vital to the ultimate success of the various surgical procedures performed to repair injured tendons. Achieving tendon-to-bone healing that is functionally and biologically similar to native anatomy can be challenging because of the limited regeneration capacity of the tendon-bone interface. Orthopaedic basic-science research strategies aiming to augment tendon-to-bone healing include the use of osteoinductive growth factors, platelet-rich plasma, gene therapy, enveloping the grafts with periosteum, osteoconductive materials, cell-based therapies, biodegradable scaffolds, and biomimetic patches. Low-intensity pulsed ultrasound and extracorporeal shockwave treatment may affect tendon-to-bone healing by means of mechanical forces that stimulate biological cascades at the insertion site. Application of various loading methods and immobilization times influence the stress forces acting on the recently repaired tendon-to-bone attachment, which eventually may change the biological dynamics of the interface. Other approaches, such as the use of coated sutures and interference screws, aim to deliver biological factors while achieving mechanical stability by means of various fixators. Controlled Level-I human trials are required to confirm the promising results from in vitro or animal research studies elucidating the mechanisms underlying tendon-to-bone healing and to translate these results into clinical practice.
Collapse
Affiliation(s)
- Kivanc Atesok
- Center for Musculoskeletal Care, NYU Hospital for Joint Diseases, 333 East 38th Street, New York, NY 10016
| | - Freddie H Fu
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA 15213
| | - Megan R Wolf
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA 15213
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minamimi-ku, Hiroshima 734-8551, Japan
| | - Laith M Jazrawi
- Center for Musculoskeletal Care, NYU Hospital for Joint Diseases, 333 East 38th Street, New York, NY 10016
| | - M Nedim Doral
- Departments of Orthopaedics and Traumatology, and Sports Medicine, Hacettepe University School of Medicine, 06100 Sihhiye, Ankara, Turkey
| | | | - Scott A Rodeo
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, 525 East 71st Street, New York, NY 10021. E-mail address for S. A. Rodeo:
| |
Collapse
|
30
|
Lui PPY, Ng SW. Cell therapy for the treatment of tendinopathy – A systematic review on the pre-clinical and clinical evidence. Semin Arthritis Rheum 2013; 42:651-66. [DOI: 10.1016/j.semarthrit.2012.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/27/2012] [Accepted: 10/29/2012] [Indexed: 11/25/2022]
|
31
|
Loeffler BJ, Scannell BP, Peindl RD, Connor P, Davis DE, Hoelscher GL, Norton HJ, Hanley EN, Gruber HE. Cell-based tissue engineering augments tendon-to-bone healing in a rat supraspinatus model. J Orthop Res 2013; 31:407-12. [PMID: 23070709 DOI: 10.1002/jor.22234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/27/2012] [Indexed: 02/04/2023]
Abstract
Rotator cuff pathology causes substantial pain/disability and health care costs. Cell-based tissue engineering offers promise for improved outcomes in tendon to bone healing. Cells from the tendon-bone interface were used here to amplify surgical defect healing in a rat model. Cells from tendon-to-bone interface of the rotator cuff were seeded in sponges and implanted into critical rotator cuff defects: Group I, control; II, surgical defect only; III, suture-repaired defect; IV, surgical defect, repair with sponge only; V, surgical defect, repair with sponge with cells. Three, 6-, and 12-week results were assessed for histologic features. At 3 weeks, histologic indices in Group V were significantly increased versus other treatment groups. Group V (12 weeks) showed significantly improved collagen organization versus other treatment groups; there was no difference in collagen organization in Group I versus V. In summary, increased cellularity, inflammation, vascularity, and collagen organization were present at 3 weeks; increased collagen organization at 12 weeks in Group V provides evidence for improved healing with cells. Data further support the utility of tendon-bone interface cells in rotator cuff healing.
Collapse
Affiliation(s)
- Bryan J Loeffler
- Department of Orthopaedic Surgery, Orthopaedic Research Biology, Cannon Research, Room 304, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Spaas JH, Guest DJ, Van de Walle GR. Tendon Regeneration in Human and Equine Athletes. Sports Med 2012; 42:871-90. [DOI: 10.1007/bf03262300] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Wang T, Gardiner BS, Lin Z, Rubenson J, Kirk TB, Wang A, Xu J, Smith DW, Lloyd DG, Zheng MH. Bioreactor design for tendon/ligament engineering. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:133-46. [PMID: 23072472 DOI: 10.1089/ten.teb.2012.0295] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, School of Surgery, University of Western Australia, Crawley, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Halpern BC, Chaudhury S, Rodeo SA. The role of platelet-rich plasma in inducing musculoskeletal tissue healing. HSS J 2012; 8:137-45. [PMID: 23874254 PMCID: PMC3715623 DOI: 10.1007/s11420-011-9239-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/01/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Platelet-rich plasma [PRP] has received increasing interest across many musculoskeletal disciplines and has been widely applied clinically to stimulate tissue healing in numerous anatomical regions. The known actions of platelet-derived factors suggest that PRP may have significant potential in the treatment of pathological conditions of cartilage, tendon, ligament, and muscle. PURPOSE The aim of this manuscript is to review current literature regarding the biology of PRP and the efficacy of using PRP to augment healing of tendon ligament and muscle injuries, as well as early osteoarthritis. METHODS A comprehensive literature review of musculoskeletal applications of PRP was performed, including basic science and clinical studies such as randomized controlled trials, case controlled series, and case series. RESULTS The most compelling evidence to support the efficacy of PRP is for its application to tendon damage associated with lateral and medial epicondylitis. Although some promising studies have been reported supporting the use of PRP in osteoarthritis and ligament and muscle injuries, it currently remains unknown whether PRP effectively alters the progression of osteoarthritis or aids the healing of ligament and muscle tissues. CONCLUSION The rationale for the use of PRP to improve tissue healing is strong, but the efficacy for many musculoskeletal applications remains unproven. PRP has been shown to be a safe treatment. A number of questions regarding PRP remain unanswered, including the optimal concentration of platelets, what cell types should be present, the ideal frequency of application, or the optimal rehabilitation regimen for tissue repair and return to full function.
Collapse
Affiliation(s)
- Brian C. Halpern
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Salma Chaudhury
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Scott A. Rodeo
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| |
Collapse
|
35
|
Tan SL, Ahmad RE, Ahmad TS, Merican AM, Abbas AA, Ng WM, Kamarul T. Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells Tissues Organs 2012; 196:325-38. [PMID: 22653337 DOI: 10.1159/000335693] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/12/2011] [Indexed: 12/23/2022] Open
Abstract
The use of growth differentiation factor 5 (GDF-5) in damaged tendons has been shown to improve tendon repair. It has been hypothesized that further improvements may be achieved when GDF-5 is used to promote cell proliferation and induce tenogenic differentiation in human bone marrow-derived mesenchymal stem cells (hMSCs). However, the optimal conditions required to produce these effects on hMSCs have not been demonstrated in previous studies. A study to determine cell proliferation and tenogenic differentiation in hMSCs exposed to different concentrations of GDF-5 (0, 5, 25, 50, 100 and 500 ng/ml) was thus conducted. No significant changes were observed in the cell proliferation rate in hMSCs treated at different concentrations of GDF-5. GDF-5 appeared to induce tenogenic differentiation at 100 ng/ml, as reflected by (1) a significant increase in total collagen expression, similar to that of the primary native human tenocyte culture; (2) a significant upregulation in candidate tenogenic marker gene expression, i.e. scleraxis, tenascin-C and type-I collagen; (3) the ratio of type-I collagen to type-III collagen expression was elevated to levels similar to that of human tenocyte cultures, and (4) a significant downregulation of the non-tenogenic marker genes runt-related transcription factor 2 and sex determining region Y (SRY)-box 9 at day 7 of GDF-5 induction, further excluding hMSC differentiation into other lineages. In conclusion, GDF-5 does not alter the proliferation rates of hMSCs, but, instead, induces an optimal tenogenic differentiation response at 100 ng/ml.
Collapse
Affiliation(s)
- Sik-Loo Tan
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
36
|
Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg 2012; 21:278-94. [PMID: 22244071 DOI: 10.1016/j.jse.2011.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Repair of rotator cuff tears in experimental models has been significantly improved by the use of enhanced biologic approaches, including platelet-rich plasma, bone marrow aspirate, growth factor supplements, and cell- and gene-modified cell therapy. Despite added complexity, cell-based therapies form an important part of enhanced repair, and combinations of carrier vehicles, growth factors, and implanted cells provide the best opportunity for robust repair. Bone marrow-derived mesenchymal stem cells provide a stimulus for repair in flexor tendons, but application in rotator cuff repair has not shown universally positive results. The use of scaffolds such as platelet-rich plasma, fibrin, and synthetic vehicles and the use of gene priming for stem cell differentiation and local anabolic and anti-inflammatory impact have both provided essential components for enhanced tendon and tendon-to-bone repair in rotator cuff disruption. Application of these research techniques in human rotator cuff injury has generally been limited to autologous platelet-rich plasma, bone marrow concentrate, or bone marrow aspirates combined with scaffold materials. Cultured mesenchymal progenitor therapy and gene-enhanced function have not yet reached clinical trials in humans. Research in several animal species indicates that the concept of gene-primed stem cells, particularly embryonic stem cells, combined with effective culture conditions, transduction with long-term integrating vectors carrying anabolic growth factors, and development of cells conditioned by use of RNA interference gene therapy to resist matrix metalloproteinase degradation, may constitute potential advances in rotator cuff repair. This review summarizes cell- and gene-enhanced cell research for tendon repair and provides future directions for rotator cuff repair using biologic composites.
Collapse
Affiliation(s)
- Alan J Nixon
- Comparative Orthopaedics Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
37
|
Stem cell applications in tendon disorders: a clinical perspective. Stem Cells Int 2012; 2012:637836. [PMID: 22448174 PMCID: PMC3289928 DOI: 10.1155/2012/637836] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/16/2011] [Accepted: 10/18/2011] [Indexed: 01/12/2023] Open
Abstract
Tendon injuries are a common cause of morbidity and a significant health burden on society. Tendons are structural tissues connecting muscle to bone and are prone to tearing and tendinopathy, an overuse or degenerative condition that is characterized by failed healing and cellular depletion. Current treatments, for tendon tear are conservative, surgical repair or surgical scaffold reconstruction. Tendinopathy is treated by exercises, injection therapies, shock wave treatments or surgical tendon debridement. However, tendons usually heal with fibrosis and scar tissue, which has suboptimal tensile strength and is prone to reinjury, resulting in lifestyle changes with activity restriction. Preclinical studies show that cell therapies have the potential to regenerate rather than repair tendon tissue, a process termed tenogenesis. A number of different cell lines, with varying degrees of differentiation, have being evaluated including stem cells, tendon derived cells and dermal fibroblasts. Even though cellular therapies offer some potential in treating tendon disorders, there have been few published clinical trials to determine the ideal cell source, the number of cells to administer, or the optimal bioscaffold for clinical use.
Collapse
|