1
|
D'Lugos AC, Skotak NJ, Faris JJ, Thomas NT, Mazo CE, Dickinson JJ, Moore JG, Jorgensen TM, Dickinson JM. Skeletal muscle architecture and aging: A comparison of ultrasound techniques and an assessment of intrarater reliability. Clin Physiol Funct Imaging 2024; 44:359-370. [PMID: 38616358 DOI: 10.1111/cpf.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE To assess intrarater reliability of ultrasound-determined measurements of skeletal muscle characteristics across different measurement outcomes, imaging techniques, and age groups. METHODS 2D ultrasound images (B-mode) of the quadriceps were obtained from young (26 ± 4 year, n = 8 M, 8 F) and older (70 ± 7 year, n = 7 M, 5 F) adults on two occasions, separated by 6 ± 3 days. With participants in both standing and supine postures, images were collected from five anatomical sites along the anterior (two sites) and lateral (three sites) compartments of the thigh corresponding to 56%, 39%, and 22% (lateral only) of femur length. Images were analysed for muscle thickness, pennation angle, and echogenicity. Intraclass correlation coefficients (ICC) were used to assess reliability. RESULTS Muscle thickness values were higher (p < 0.05) on images collected in the stand versus supine posture only for muscles of the anterior compartment, independent of age. Echogenicity values were higher (p < 0.05) in the vastus intermedius on images collected in the supine versus stand posture only in older adults. Pennation angle values were not impacted by imaging posture (p > 0.05). ICC values for thickness, echogenicity, and pennation angle were generally higher for analyses conducted on images collected in the supine versus stand posture. Imaging posture generated a greater difference in ICC values in the lateral versus anterior muscles and in older versus younger participants. CONCLUSION Our findings suggest that participant posture during imaging impacts the absolute values and intrarater reliability of ultrasound-determined muscle characteristics in a muscle-specific fashion, and this effect is greater in older compared to younger individuals.
Collapse
Affiliation(s)
- Andrew C D'Lugos
- Department of Kinesiology, California State University Chico, Chico, California, USA
| | - Nathan J Skotak
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Jacquelyn J Faris
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Nicholas T Thomas
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Corey E Mazo
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Jonathan J Dickinson
- Department of Health Sciences, Central Washington University, Ellensburg, Washington, USA
| | - Jessy G Moore
- Department of Health Sciences, Central Washington University, Ellensburg, Washington, USA
| | - Theresa M Jorgensen
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Jared M Dickinson
- Department of Health Sciences, Central Washington University, Ellensburg, Washington, USA
| |
Collapse
|
2
|
Graham MC, Thompson KL, Hawk GS, Fry CS, Noehren B. Muscle Fiber Cross-Sectional Area Is Associated With Quadriceps Strength and Rate of Torque Development After ACL Injury. J Strength Cond Res 2024; 38:e273-e279. [PMID: 38349361 PMCID: PMC11116075 DOI: 10.1519/jsc.0000000000004743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Graham, MC, Thompson, KL, Hawk, GS, Fry, CS, and Noehren, B. Muscle fiber cross-sectional area is associated with quadriceps strength and rate of torque development after ACL injury. J Strength Cond Res 38(6): e273-e279, 2024-The purpose of this study was to investigate the relationship between muscle fiber type-specific properties of the vastus lateralis and quadriceps muscle performance in individuals after an anterior cruciate ligament (ACL) tear. 26 subjects (22.0 ± 5.4 years) were included in this cross-sectional study, and all data were collected before ACL reconstruction. Quadriceps peak torque (QPT) and early (0-100 ms) and late (100-200 ms) rate of torque development (RTD) were obtained from maximal voluntary isometric quadriceps strength testing. Muscle fiber cross-sectional area (fCSA) and percent fiber type distribution (FT%) were evaluated through immunohistochemical analysis of a muscle biopsy. Between-limb differences in fiber characteristics were assessed using paired t-tests (with α-level 0.05). Relationships between fiber-specific properties and quadriceps muscle performance were determined using separate multiple linear regression analyses for ACL-injured and noninjured limbs. There were significant differences in fCSA between ACL-injured and noninjured limbs across all fiber types, but no differences in FT%. Type 1 fCSA, type 2a fCSA, and their interaction effect were the explanatory variables with the strongest relationship to all performance outcomes for the ACL-injured limb. The explanatory variables in the ACL-injured limb had a significant relationship to QPT and late RTD, but not early RTD. These findings suggest that QPT and late RTD are more heavily influenced by fCSA than FT% in ACL-injured limbs. This work serves as a foundation for the development of more specific rehabilitation strategies aimed at improving quadriceps muscle function before ACL reconstruction or for individuals electing nonsurgical management.
Collapse
Affiliation(s)
- Megan C Graham
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| | | | - Gregory S Hawk
- Department of Statistics, University of Kentucky, Lexington, Kentucky; and
| | - Christopher S Fry
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Brian Noehren
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
3
|
Noh SG, Ahn A, Davi SM, Lepley LK, Kwon OS. Quadriceps muscle atrophy after non-invasive anterior cruciate ligament injury: evidence linking to autophagy and mitophagy. Front Physiol 2024; 15:1341723. [PMID: 38496299 PMCID: PMC10940348 DOI: 10.3389/fphys.2024.1341723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: Anterior cruciate ligament (ACL) injury is frequently accompanied by quadriceps muscle atrophy, a process closely linked to mitochondrial health and mitochondria-specific autophagy. However, the temporal progression of key quadricep atrophy-mediating events following ACL injury remains poorly understood. To advance our understanding, we conducted a longitudinal study to elucidate key parameters in quadriceps autophagy and mitophagy. Methods: Long-Evans rats were euthanized at 7, 14, 28, and 56 days after non-invasive ACL injury that was induced via tibial compression overload; controls were not injured. Vastus lateralis muscle was extracted, and subsequent immunoblotting analysis was conducted using primary antibodies targeting key proteins involved in autophagy and mitophagy cellular processes. Results: Our findings demonstrated dynamic changes in autophagy and mitophagy markers in the quadriceps muscle during the recovery period after ACL injury. The early response to the injury was characterized by the induction of autophagy at 14 days (Beclin1), indicating an initial cellular response to the injury. Subsequently, at 14 days we observed increase in the elongation of autophagosomes (Atg4B), suggesting a potential remodeling process. The autophagosome flux was also augmented between 14- and 28 days (LC3-II/LC3-I ratio and p62). Notably, at 56 days, markers associated with the elimination of damaged mitochondria were elevated (PINK1, Parkin, and VDAC1), indicating a possible ongoing cellular repair and restoration process. Conclusion: These data highlight the complexity of muscle recovery after ACL injury and underscore the overlooked but crucial role of autophagy and mitophagy in promoting the recovery process.
Collapse
Affiliation(s)
- Sung Gi Noh
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Ahram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Steven M. Davi
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Cooperative Studies Program Coordinating Center (CSPCC), VA Connecticut Healthcare System, West Haven, CT, United States
| | - Lindsey K. Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Department of Orthopaedic Surgery and Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
4
|
Latham CM, Balawender PJ, Thomas NT, Keeble AR, Brightwell CR, Ismaeel A, Wen Y, Fry JL, Sullivan PG, Johnson DL, Noehren B, Owen AM, Fry CS. Overexpression of manganese superoxide dismutase mitigates ACL injury-induced muscle atrophy, weakness and oxidative damage. Free Radic Biol Med 2024; 212:191-198. [PMID: 38154571 PMCID: PMC10842887 DOI: 10.1016/j.freeradbiomed.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress has been implicated in the etiology of skeletal muscle weakness following joint injury. We investigated longitudinal patient muscle samples following knee injury (anterior cruciate ligament tear). Following injury, transcriptomic analysis revealed downregulation of mitochondrial metabolism-related gene networks, which were supported by reduced mitochondrial respiratory flux rates. Additionally, enrichment of reactive oxygen species (ROS)-related pathways were upregulated in muscle following knee injury, and further investigation unveiled marked oxidative damage in a progressive manner following injury and surgical reconstruction. We then investigated whether antioxidant protection is effective in preventing muscle atrophy and weakness after knee injury in mice that overexpress Mn-superoxide dismutase (MnSOD+/-). MnSOD+/- mice showed attenuated oxidative damage, atrophy, and muscle weakness compared to wild type littermate controls following ACL transection surgery. Taken together, our results indicate that ROS-related damage is a causative mechanism of muscle dysfunction after knee injury, and that mitochondrial antioxidant protection may hold promise as a therapeutic target to prevent weakness and development of disability.
Collapse
Affiliation(s)
- Christine M Latham
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ahmed Ismaeel
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA; Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jean L Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA.
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA; Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Wen Y, Latham CM, Moore AN, Thomas NT, Lancaster BD, Reeves KA, Keeble AR, Fry CS, Johnson DL, Thompson KL, Noehren B, Fry JL. Vitamin D status associates with skeletal muscle loss after anterior cruciate ligament reconstruction. JCI Insight 2023; 8:e170518. [PMID: 37856482 PMCID: PMC10795826 DOI: 10.1172/jci.insight.170518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUNDAlthough 25-hydroxyvitamin D [25(OH)D] concentrations of 30 ng/mL or higher are known to reduce injury risk and boost strength, the influence on anterior cruciate ligament reconstruction (ACLR) outcomes remains unexamined. This study aimed to define the vitamin D signaling response to ACLR, assess the relationship between vitamin D status and muscle fiber cross-sectional area (CSA) and bone density outcomes, and discover vitamin D receptor (VDR) targets after ACLR.METHODSTwenty-one young, healthy, physically active participants with recent ACL tears were enrolled (17.8 ± 3.2 years, BMI 26.0 ± 3.5 kg/m2). Data were collected through blood samples, vastus lateralis biopsies, dual energy x-ray bone density measurements, and isokinetic dynamometer measures at baseline, 1 week, 4 months, and 6 months after ACLR. The biopsies facilitated CSA, Western blotting, RNA-seq, and VDR ChIP-seq analyses.RESULTSACLR surgery led to decreased circulating bioactive vitamin D and increased VDR and activating enzyme expression in skeletal muscle 1 week after ACLR. Participants with less than 30 ng/mL 25(OH)D levels (n = 13) displayed more significant quadriceps fiber CSA loss 1 week and 4 months after ACLR than those with 30 ng/mL or higher (n = 8; P < 0.01 for post hoc comparisons; P = 0.041 for time × vitamin D status interaction). RNA-seq and ChIP-seq data integration revealed genes associated with energy metabolism and skeletal muscle recovery, potentially mediating the impact of vitamin D status on ACLR recovery. No difference in bone mineral density losses between groups was observed.CONCLUSIONCorrecting vitamin D status prior to ACLR may aid in preserving skeletal muscle during recovery.FUNDINGNIH grants R01AR072061, R01AR071398-04S1, and K99AR081367.
Collapse
Affiliation(s)
- Yuan Wen
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine
| | | | | | | | | | | | - Alexander R. Keeble
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
| | | | | | - Katherine L. Thompson
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Brian Noehren
- Center for Muscle Biology, College of Health Sciences
- Department of Orthopaedic Surgery & Sports Medicine, and
| | - Jean L. Fry
- Center for Muscle Biology, College of Health Sciences
| |
Collapse
|
6
|
Brightwell CR, Latham CM, Keeble AR, Thomas NT, Owen AM, Reeves KA, Long DE, Patrick M, Gonzalez-Velez S, Abed V, Annamalai RT, Jacobs C, Conley CE, Hawk GS, Stone AV, Fry JL, Thompson KL, Johnson DL, Noehren B, Fry CS. GDF8 inhibition enhances musculoskeletal recovery and mitigates posttraumatic osteoarthritis following joint injury. SCIENCE ADVANCES 2023; 9:eadi9134. [PMID: 38019905 PMCID: PMC10686569 DOI: 10.1126/sciadv.adi9134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Musculoskeletal disorders contribute substantially to worldwide disability. Anterior cruciate ligament (ACL) tears result in unresolved muscle weakness and posttraumatic osteoarthritis (PTOA). Growth differentiation factor 8 (GDF8) has been implicated in the pathogenesis of musculoskeletal degeneration following ACL injury. We investigated GDF8 levels in ACL-injured human skeletal muscle and serum and tested a humanized monoclonal GDF8 antibody against a placebo in a mouse model of PTOA (surgically induced ACL tear). In patients, muscle GDF8 was predictive of atrophy, weakness, and periarticular bone loss 6 months following surgical ACL reconstruction. In mice, GDF8 antibody administration substantially mitigated muscle atrophy, weakness, and fibrosis. GDF8 antibody treatment rescued the skeletal muscle and articular cartilage transcriptomic response to ACL injury and attenuated PTOA severity and deficits in periarticular bone microarchitecture. Furthermore, GDF8 genetic deletion neutralized musculoskeletal deficits in response to ACL injury. Our findings support an opportunity for rapid targeting of GDF8 to enhance functional musculoskeletal recovery and mitigate the severity of PTOA after injury.
Collapse
Affiliation(s)
- Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Alexander R. Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M. Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Kelsey A. Reeves
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Douglas E. Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew Patrick
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Varag Abed
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | - Cale Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Caitlin E. Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory S. Hawk
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jean L. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Katherine L. Thompson
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Darren L. Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|