1
|
Song L, Constanthin PE, Sun T, Li X, Xia Z, An L, Li F. Long-term Production of Glycogen and Hepatic-Derived, Cell-Invasion-Promoting Chemokines by Ultrasound-Driven Hepatic-Differentiated Human Bone Marrow Mesenchymal Stem Cells. Radiat Res 2020; 193:394-405. [PMID: 32126187 DOI: 10.1667/rr15421.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current treatment for liver failure is restricted to surgical liver transplantation, which is technically complicated, limited by the shortage of available organs and presents major risks to the patient. Bone marrow mesenchymal stem cells (BMSCs) represent promising sources of hepatocyte-like cells for cell transplantation treatment. However, a safe and efficient induction method for their differentiation remains to be defined. Here we further optimized an effective technique by combining high-dose treatment with hepatocyte growth factor (HGF) and ultrasound stimulation. The optimized ultrasound parameter (1.0 W/cm2 intensity, 1 MHz frequency, 20% duty cycle, 100 Hz pulse repetition frequency, 60-s irradiation duration, triple times in three days) combined with different HGF doses (10, 20 and 50 ng/ml) was used to treat BMSCs. The results showed that the specific hepatic markers, including α-fetoprotein (αFP/AFP), cytokeratin 18 (CK18), albumin (ALB) and glycogen, were increased in a dose-dependent manner. Their concentration was then further increased when ultrasound irradiation was administered (P < 0.05), as indicated by PCR, Western blot and immunofluorescence staining as well as a glycogen synthesis test. Furthermore, analysis of the hepatocyte-derived chemokines showed elevated stromal cell-derived factor 1alpha (SDF-1α) and C-X-C chemokine receptor type 4 (CXCR4) after HGF treatment. Again, concentrations of those chemokines were further increased by ultrasound radiation (P < 0.05). The observed increased effect was sustained for 21 days. To summarize, we further defined the optimal combination of HGF and ultrasound treatment to increase the differentiation and chemotaxis of BMSCs in a safe, sustained and efficient manner. These findings provide a new perspective for stem cell orientation in the field of tissue engineering.
Collapse
Affiliation(s)
- Lin Song
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Paul E Constanthin
- Department of Fundamental Neurosciences, University of Geneva, Geneva, 1211, Switzerland.,Neurosurgery Department, Hôpitaux Universitaires de Genève, Geneva, 1205, Switzerland
| | - Ting Sun
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhen Xia
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
3
|
Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. BIOMED RESEARCH INTERNATIONAL 2013; 2013:406871. [PMID: 23991414 PMCID: PMC3749543 DOI: 10.1155/2013/406871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022]
Abstract
Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.
Collapse
|
4
|
Mizumoto H, Hayashi S, Matsumoto K, Ikeda K, Kusumi T, Inamori M, Nakazawa K, Ijima H, Funatsu K, Kajiwara T. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells. Cell Transplant 2012; 21:421-8. [PMID: 22793049 DOI: 10.3727/096368911x605321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hybrid artificial liver (HAL) is an extracorporeal circulation system comprised of a bioreactor containing immobilized functional liver cells. It is expected to not only serve as a temporary liver function support system, but also to accelerate liver regeneration in recovery from hepatic failure. One of the most difficult problems in developing a hybrid artificial liver is obtaining an adequate cell source. In this study, we attempt to differentiate embryonic stem (ES) cells by hepatic lineage using a polyurethane foam (PUF)/spheroid culture in which the cultured cells spontaneously form spherical multicellular aggregates (spheroids) in the pores of the PUF. We also demonstrate the feasibility of the PUF-HAL system by comparing ES cells to primary hepatocytes in in vitro and ex vivo experiments. Mouse ES cells formed multicellular spheroids in the pores of PUF. ES cells expressed liver-specific functions (ammonia removal and albumin secretion) after treatment with the differentiation-promoting agent, sodium butyrate (SB). We designed a PUF-HAL module comprised of a cylindrical PUF block with many medium-flow capillaries for hepatic differentiation of ES cells. The PUF-HAL module cells expressed ammonia removal and albumin secretion functions after 2 weeks of SB culture. Because of high proliferative activity of ES cells and high cell density, the maximum expression level of albumin secretion function per unit volume of module was comparable to that seen in primary mouse hepatocyte culture. In the animal experiments with rats, the PUF-HAL differentiating ES cells appeared to partially contribute to recovery from liver failure. This outcome indicates that the PUF module containing differentiating ES cells may be a useful biocomponent of a hybrid artificial liver support system.
Collapse
Affiliation(s)
- Hiroshi Mizumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aoki K, Mizumoto H, Nakazawa K, Funatsu K, Kajiwara T. Evaluation of a hybrid artificial liver module with liver lobule-like structure in rats with liver failure. Int J Artif Organs 2008; 31:55-61. [PMID: 18286455 DOI: 10.1177/039139880803100108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We studied the recovery of rats with fulminant hepatic failure (FHF) by treating them with our original hybrid artificial liver support system (HALSS). We developed an original artificial liver module having a liver lobule-like structure (LLS). This module consists of many hollow fibers regularly arranged in close proximity and hepatocyte aggregates (organoids) induced into the extra capillary space of the module by centrifugal force. The LLS module can express some liver specific functions at high levels and maintain them for several months in vitro. In this study, we evaluated the efficacy of our LLS-HALSS by using rats with FHF induced by a method that combined partial hepatectomy with hepatic ischemia. In the animal experiments, blood ammonia levels rapidly increased in the control group (sham-HALSS group). These rats died during or immediately after application of the sham-HALLS. On the other hand, in the LLS module application group (LLS-control group), the increase in blood ammonia was completely suppressed and all rats recovered. Blood constituents at 4 weeks after application were at normal levels, and the weight of the liver was the same as that of a normal rat. These results indicate that HALSS may be useful for treating liver failure patients until liver transplantation can be performed or until regeneration of the native liver occurs.
Collapse
Affiliation(s)
- K Aoki
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka - Japan
| | | | | | | | | |
Collapse
|
6
|
Abstract
We have developed two types of hybrid artificial liver support system (HALSS) that use hepatocyte organoid culture: (1) a PUF-HALSS comprising an artificial liver module using polyurethane foam (PUF), in which hepatocytes form spheroids in its pores, and maintained liver-specific functions for at least ten days in vitro; (2) an LLS-HALSS that uses a liver lobule-like structure (LLS) module containing hollow fibers with a microregular arrangement in which hepatocytes in the extra-fiber space of the module form the organoids by centrifugation that maintain liver-specific functions for at least two months in vitro. In preclinical experiments, a PUF-HALSS was applied to a pig having liver failure. To evaluate the effect of liver regeneration, a PUF- and an LLS-HALSS were applied to a rat having reversible hepatic failure. Each HALSS was effective in supporting liver function, stabilization of general conditions and recovery from liver failure state. These results indicate that these HALSS may be useful to treat liver failure patients until liver transplantation or until regeneration of the native liver.
Collapse
Affiliation(s)
- H Mizumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|