1
|
Bonomini M, Davies S, Kleophas W, Lambie M, Reboldi G, Liberato LD, Divino-Filho JC, Heimburger O, Ortiz A, Povlsen J, Iacobelli M, Prosdocimi T, Arduini A. Rationale and design of ELIXIR, a randomized, controlled trial to evaluate efficacy and safety of XyloCore, a glucose-sparing solution for peritoneal dialysis. Perit Dial Int 2025; 45:17-25. [PMID: 39205396 DOI: 10.1177/08968608241274106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Peritoneal dialysis adoption and technique survival is affected by limitations related to peritoneal membrane longevity and metabolic alterations. Indeed, almost all peritoneal dialysis fluids exploit glucose as an osmotic agent that rapidly diffuses across the peritoneal membrane, potentially resulting in metabolic abnormalities such as hyperglycemia, hyperinsulinemia, obesity, and hyperlipidemia. Moreover, glucose-degradation products generated during heat sterilization, other than glucose itself, induce significant morphological and functional changes in the peritoneum leading to ultrafiltration failure. The partial substitution of glucose with osmotic agents characterized by a better local and systemic biocompatibility has been suggested as a potential strategy to innovate peritoneal dialysis fluids. The approach aims to minimize glucose-associated toxicity, preserving the peritoneal membrane welfare and counteracting common comorbidities. In this work, we report the clinical trial design of ELIXIR, a phase III randomized, controlled, blinded outcome assessment study comparing Xylocore®, an innovative formulation based on Xylitol and l-carnitine, to standard glucose-based regimens, in end-stage kidney disease patients treated with continuous ambulatory peritoneal dialysis; 170 patients will be randomized (1:1) to receive XyloCore® or to continue their pre-randomization peritoneal dialysis (PD) therapy with glucose-only PD solutions, for 6 months. The primary study's objective is to demonstrate the noninferiority of XyloCore® in terms of Kt/V urea, for which a clinically acceptable noninferiority margin of -0.25 has been determined, assuming that all patients will be treated aiming to a minimum target of 1.7 and an optimal target of 2.0.
Collapse
Affiliation(s)
- Mario Bonomini
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Simon Davies
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Staffordshire, UK
| | | | - Mark Lambie
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Staffordshire, UK
| | - Gianpaolo Reboldi
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Lorenzo Di Liberato
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | | | - Olof Heimburger
- Medical Unit Renal Medicine, Karolinska University Hospital, and CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Johan Povlsen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Arduino Arduini
- Research and Development, Iperboreal Pharma, Pescara, Italy
- Research and Development, CoreQuest Sagl, Lugano, Switzerland
| |
Collapse
|
2
|
Bartosova M, Zarogiannis SG, Schmitt CP. How peritoneal dialysis transforms the peritoneum and vasculature in children with chronic kidney disease-what can we learn for future treatment? Mol Cell Pediatr 2022; 9:9. [PMID: 35513740 PMCID: PMC9072612 DOI: 10.1186/s40348-022-00141-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Children with chronic kidney disease (CKD) suffer from inflammation and reactive metabolite-induced stress, which massively accelerates tissue and vascular aging. Peritoneal dialysis (PD) is the preferred dialysis mode in children, but currently used PD fluids contain far supraphysiological glucose concentrations for fluid and toxin removal and glucose degradation products (GDP). While the peritoneal membrane of children with CKD G5 exhibits only minor alterations, PD fluids trigger numerous molecular cascades resulting in major peritoneal membrane inflammation, hypervascularization, and fibrosis, with distinct molecular and morphological patterns depending on the GDP content of the PD fluid used. PD further aggravates systemic vascular disease. The systemic vascular aging process is particularly pronounced when PD fluids with high GDP concentrations are used. GDP induce endothelial junction disintegration, apoptosis, fibrosis, and intima thickening. This review gives an overview on the molecular mechanisms of peritoneal and vascular transformation and strategies to improve peritoneal and vascular health in patients on PD.
Collapse
Affiliation(s)
- Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany.,Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
3
|
Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis. Int J Mol Sci 2022; 23:ijms23094831. [PMID: 35563220 PMCID: PMC9102299 DOI: 10.3390/ijms23094831] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Peritoneal dialysis (PD) is an efficient renal replacement therapy for patients with end-stage renal disease. Even if it ensures an outcome equivalent to hemodialysis and a better quality of life, in the long-term, PD is associated with the development of peritoneal fibrosis and the consequents patient morbidity and PD technique failure. This unfavorable effect is mostly due to the bio-incompatibility of PD solution (mainly based on high glucose concentration). In the present review, we described the mechanisms and the signaling pathway that governs peritoneal fibrosis, epithelial to mesenchymal transition of mesothelial cells, and angiogenesis. Lastly, we summarize the present and future strategies for developing more biocompatible PD solutions.
Collapse
|
4
|
How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient's Health). Int J Mol Sci 2021; 22:ijms22157955. [PMID: 34360717 PMCID: PMC8347640 DOI: 10.3390/ijms22157955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.
Collapse
|
5
|
The osmo-metabolic approach: a novel and tantalizing glucose-sparing strategy in peritoneal dialysis. J Nephrol 2020; 34:503-519. [PMID: 32767274 PMCID: PMC8036224 DOI: 10.1007/s40620-020-00804-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Peritoneal dialysis (PD) is a viable but under-prescribed treatment for uremic patients. Concerns about its use include the bio-incompatibility of PD fluids, due to their potential for altering the functional and anatomical integrity of the peritoneal membrane. Many of these effects are thought to be due to the high glucose content of these solutions, with attendant issues of products generated during heat treatment of glucose-containing solutions. Moreover, excessive intraperitoneal absorption of glucose from the dialysate has many potential systemic metabolic effects. This article reviews the efforts to develop alternative PD solutions that obviate some of these side effects, through the replacement of part of their glucose content with other osmolytes which are at least as efficient in removing fluids as glucose, but less impactful on patient metabolism. In particular, we will summarize clinical studies on the use of alternative osmotic ingredients that are commercially available (icodextrin and amino acids) and preclinical studies on alternative solutions under development (taurine, polyglycerol, carnitine and xylitol). In addition to the expected benefit of a glucose-sparing approach, we describe an ‘osmo-metabolic’ approach in formulating novel PD solutions, in which there is the possibility of exploiting the pharmaco-metabolic properties of some of the osmolytes to attenuate the systemic side effects due to glucose. This approach has the potential to ameliorate pre-existing co-morbidities, including insulin resistance and type-2 diabetes, which have a high prevalence in the dialysis population, including in PD patients.
Collapse
|
6
|
Abstract
Peritoneal dialysis (PD) solutions using glucose as osmotic agent have been used for more than two decades as effective treatment for patients with end-stage renal disease. Although alternative osmotic agents such as amino acids and macromolecular solutions, including polypeptides and glucose polymers, are now available, glucose is still the most widely used osmotic agent in PD. It has been shown to be safe, effective, readily metabolized, and inexpensive. On the other hand, it is widely assumed that exposure of the peritoneal membrane to high glucose concentrations contributes to both structural and functional changes in the dialyzed peritoneal membrane. As in diabetes, glucose, either directly or indirectly through the generation of glucose degradation products or the formation of advanced glycation end products, may contribute to peritoneal membrane failure. Although efforts to reduce glucose toxicity have been made for years, only a few suggestions, such as dual-bag systems with bicarbonate as buffer system, have found broader acceptance. Recently, some interesting new approaches to the problem of glucose-related toxicity have been made, but further investigations will be necessary before they can be used clinically. This review will focus on adverse effects of glucose in PD solutions and summarize different aspects of glucotoxicity and potential therapeutic interventions.
Collapse
Affiliation(s)
- Thomas Sitter
- Department of Nephrology, Medizinische Poliklinik–Innenstadt, Klinikum der Universität München, Germany
| | - Matthias Sauter
- Department of Nephrology, Medizinische Poliklinik–Innenstadt, Klinikum der Universität München, Germany
| |
Collapse
|
7
|
Bonomini M, Di Liberato L, Zammit V, Arduini A. Current Opinion on Usage of L-Carnitine in End-Stage Renal Disease Patients on Peritoneal Dialysis. Molecules 2019; 24:molecules24193449. [PMID: 31547545 PMCID: PMC6803867 DOI: 10.3390/molecules24193449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The advantages of peritoneal dialysis (PD) over hemodialysis (HD) are well-documented. Notwithstanding, only a small proportion of patients with end-stage renal disease (ESRD) are managed with PD. This may be related to the high glucose load that PD solutions in current use have on the patient. The effects of such excess glucose include the relatively early limitation of the ultrafiltration capacity of the peritoneal membrane, and the metabolic effects associated with hyperglycemia, e.g., decreased insulin sensitivity. This article describes the advantages that may be realized by the glucose-sparing effects of substituting part of the glucose load with other osmotically active metabolites, particularly L-carnitine. The latter is anticipated to have metabolic advantages of its own, especially as in PD patients, high plasma concentrations can be achieved in the absence of renal clearance. Besides its better biocompatibility, L-carnitine demonstrates anti-anemia action due to its effects on erythropoiesis, and positive effects on the longevity and deformability of erythrocytes. Observations from our trials on the use of carnitine-enriched PD solutions have demonstrated the effectiveness of L-carnitine as an efficient osmolyte in PD, and its favorable effect on the insulin sensitivity of the patients. The significance of these findings for future developments in the use of PD in the management of patients with ESRD is discussed.
Collapse
Affiliation(s)
- Mario Bonomini
- Department of Medicine, Section of Nephrology and Dialysis, G. d'Annunzio University, SS. Annunziata Hospital, 66100 Chieti, Italy.
| | - Lorenzo Di Liberato
- Department of Medicine, Section of Nephrology and Dialysis, G. d'Annunzio University, SS. Annunziata Hospital, 66100 Chieti, Italy
| | - Victor Zammit
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Tecnopolo, 6934 Bioggio, Switzerland
| |
Collapse
|
8
|
Abstract
Peritoneal dialysis (PD) is a successfully used method for renal replacement therapy. However, long-term PD may be associated with peritoneal fibrosis and ultrafiltration failure. The key factors linked to their appearance are repeated episodes of inflammation associated with peritonitis and long-term exposure to bioincompatible PD fluids. Different strategies have been proposed to preserve the peritoneal membrane. This article reviews the functional and structural alterations related to PD and strategies whereby we may prevent them to preserve the peritoneal membrane. The use of new, more biocompatible, PD solutions is promising, although further morphologic studies in patients using these solutions are needed. Blockade of the renin-angiotensin-aldosterone system appears to be efficacious and strongly should be considered. Other agents have been proven in experimental studies, but most of them have not yet been tested appropriately in human beings.
Collapse
Affiliation(s)
- M Auxiliadora Bajo
- Home Dialysis Unit, Nephrology Department, La Paz University Hospital, Madrid, Spain.
| | - Gloria Del Peso
- University Autónoma of Madrid, Hospital La Paz Institute for Health Research, Spanish Renal Research Network, Reina Sofia Institute for Nephrology Research, Madrid, Spain
| | - Isaac Teitelbaum
- Home Dialysis Program, University of Colorado Hospital, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
9
|
Bonomini M, Di Silvestre S, Di Tomo P, Di Pietro N, Mandatori D, Di Liberato L, Sirolli V, Chiarelli F, Indiveri C, Pandolfi A, Arduini A. Effect of peritoneal dialysis fluid containing osmo-metabolic agents on human endothelial cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3925-3932. [PMID: 27932866 PMCID: PMC5135076 DOI: 10.2147/dddt.s117078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The use of glucose as the only osmotic agent in peritoneal dialysis (PD) solutions (PDSs) is believed to exert local (peritoneal) and systemic detrimental actions, particularly in diabetic PD patients. To improve peritoneal biocompatibility, we have developed more biocompatible PDSs containing xylitol and carnitine along with significantly less amounts of glucose and have tested them in cultured Human Vein Endothelial Cells (HUVECs) obtained from the umbilical cords of healthy (C) and gestational diabetic (GD) mothers. Methods Primary C- and GD-HUVECs were treated for 72 hours with our PDSs (xylitol 0.7% and 1.5%, whereas carnitine and glucose were fixed at 0.02% and 0.5%, respectively) and two glucose-based PDSs (glucose 1.36% or 2.27%). We examined their effects on endothelial cell proliferation (cell count), viability (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay), intracellular nitro-oxidative stress (peroxynitrite levels), Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 membrane exposure (flow cytometry), and HUVEC-monocyte interactions (U937 adhesion assay). Results Compared to glucose-based PDSs, our in vitro studies demonstrated that the tested PDSs did not change the proliferative potential both in C- and GD-HUVECs. Moreover, our PDSs significantly improved endothelial cell viability, compared to glucose-based PDSs and basal condition. Notably, glucose-based PDSs significantly increased the intracellular peroxynitrite levels, Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 membrane exposure, and endothelial cell–monocyte interactions in both C- and GD-HUVECs, as compared with our experimental PDSs. Conclusion Present results show that in control and diabetic human endothelial cell models, xylitol–carnitine-based PDSs do not cause cytotoxicity, nitro-oxidative stress, and inflammation as caused by hypertonic glucose-based PDSs. Since xylitol and carnitine are also known to favorably affect glucose homeostasis, these findings suggest that our PDSs may represent a desirable hypertonic solution even for diabetic patients in PD.
Collapse
Affiliation(s)
- Mario Bonomini
- Unit of Nephrology and Dialysis; Department of Medicine and Aging Sciences
| | - Sara Di Silvestre
- Department of Medical, Oral and Biotechnological Sciences; Aging Research Center and Translational Medicine, CeSI-MeT, University "G. d'Annunzio", Chieti-Pescara
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences; Aging Research Center and Translational Medicine, CeSI-MeT, University "G. d'Annunzio", Chieti-Pescara
| | - Natalia Di Pietro
- Department of Medicine and Aging Sciences; Aging Research Center and Translational Medicine, CeSI-MeT, University "G. d'Annunzio", Chieti-Pescara
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences; Aging Research Center and Translational Medicine, CeSI-MeT, University "G. d'Annunzio", Chieti-Pescara
| | | | - Vittorio Sirolli
- Unit of Nephrology and Dialysis; Department of Medicine and Aging Sciences
| | - Francesco Chiarelli
- Department of Medicine and Aging Sciences; Aging Research Center and Translational Medicine, CeSI-MeT, University "G. d'Annunzio", Chieti-Pescara
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende CS, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences; Aging Research Center and Translational Medicine, CeSI-MeT, University "G. d'Annunzio", Chieti-Pescara
| | | |
Collapse
|
10
|
Ditsawanon P, Aramwit P. Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther 2015; 40:508-516. [PMID: 26280248 DOI: 10.1111/jcpt.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Peritoneal dialysis (PD) has been widely used by patients with end-stage renal disease. However, chronic exposure of the peritoneal membrane to bioincompatible PD solutions, and peritonitis and uraemia during long-term dialysis result in peritoneal membrane injury and thereby contribute to membrane changes, ultrafiltration (UF) failure, inadequate dialysis and technical failure. Therefore, preserving the peritoneal membrane is important to maintain the efficacy of PD. This article reviews the current literature on therapeutic agents for preserving the peritoneal membrane. METHODS A literature search of PubMed was conducted using the search terms peritoneal fibrosis, peritoneal sclerosis, membrane, integrity, preserve, therapy and peritoneal dialysis, but not including peritonitis. Published clinical trials, in vitro studies, experimental trials in animal models, meta-analyses and review articles were identified and reviewed for relevance. RESULTS AND DISCUSSION We focus on understanding how factors cause peritoneal membrane changes, the characteristics and mechanisms of peritoneal membrane changes in patients undergoing PD and the types of therapeutic agents for peritoneal membrane preservation. There have been many investigations into the preservation of the peritoneal membrane, including PD solution improvement, the inhibition of cytokine and growth factor expression using renin-angiotensin-aldosterone system (RAAS) blockade, glycosaminoglycans (GAGs), L-carnitine and taurine additives. In addition, there are potential future therapeutic agents that are still in experimental investigations. WHAT IS NEW AND CONCLUSION The efficacy of many of the therapeutic agents is uncertain because there are insufficient good-quality clinical studies. Overall membrane preservation and patient survival remain unproven in using more biocompatible PD solutions. With RAAS blockade, results are still inconclusive, as many of the clinical studies were retrospective. With GAGs, L-carnitine and taurine additives, there is no sufficiently long follow-up clinical study with a large sample size to support its efficacy. Therefore, better quality clinical studies within this area should be performed.
Collapse
Affiliation(s)
- P Ditsawanon
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - P Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
l-Carnitine status in end-stage renal disease patients on automated peritoneal dialysis. J Nephrol 2014; 27:699-706. [DOI: 10.1007/s40620-014-0076-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/21/2014] [Indexed: 12/30/2022]
|
12
|
Bonomini M, Di Liberato L, Del Rosso G, Stingone A, Marinangeli G, Consoli A, Bertoli S, De Vecchi A, Bosi E, Russo R, Corciulo R, Gesualdo L, Giorgino F, Cerasoli P, Di Castelnuovo A, Monaco MP, Shockley T, Rossi C, Arduini A. Effect of an L-carnitine-containing peritoneal dialysate on insulin sensitivity in patients treated with CAPD: a 4-month, prospective, multicenter randomized trial. Am J Kidney Dis 2013; 62:929-38. [PMID: 23725973 DOI: 10.1053/j.ajkd.2013.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/06/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND In peritoneal dialysis, the high glucose load absorbed from dialysis fluid contributes to several metabolic abnormalities, including insulin resistance. We evaluate the efficacy of a peritoneal dialysis solution containing l-carnitine as an additive to improve insulin sensitivity. STUDY DESIGN Multicenter parallel randomized controlled trial. SETTING & PARTICIPANTS Nondiabetic uremic patients on continuous ambulatory peritoneal dialysis enrolled in 8 peritoneal dialysis centers. INTERVENTION Patients were randomly assigned to receive peritoneal dialysis diurnal exchanges with either a standard glucose-based solution (1.5% or 2.5% according to the patient's need) or a glucose-based solution (identical glucose amount) enriched with l-carnitine (0.1%, weight/volume; 2 g/bag) for 4 months, the nocturnal exchange with icodextrin being unmodified. OUTCOMES & MEASUREMENTS The primary outcome was insulin sensitivity, measured by the magnitude of change from baseline in glucose infusion rate (in milligrams per kilogram of body weight per minute) during a euglycemic hyperinsulinemic clamp. Secondary outcomes were safety and tolerability, body fluid management, peritoneal dialysis efficiency parameters, and biochemistry tests. RESULTS 35 patients were randomly assigned, whereas 27 patients (standard solution, n=12; experimental solution, n = 15) were analyzed. Adverse events were not attributable to treatment. Glucose infusion rates in the l-carnitine-treated group increased from 3.8 ± 2.0 (SD) mg/kg/min at baseline to 5.0 ± 2.2 mg/kg/min at day 120 (P = 0.03) compared with 4.8 ± 2.4 mg/kg/min at baseline and 4.7 ± 2.4 mg/kg/min at day 120 observed in the control group (P = 0.8). The difference in glucose infusion rates between groups was 1.3 (95% CI, 0.0-2.6) mg/kg/min. In patients treated with l-carnitine-containing solution, urine volume did not change significantly (P = 0.1) compared to a significant diuresis reduction found in the other group (P = 0.02). For peritoneal function, no differences were observed during the observation period. LIMITATIONS Small sample size. CONCLUSIONS The use of l-carnitine in dialysis solutions may represent a new approach to improving insulin sensitivity in nondiabetic peritoneal dialysis patients.
Collapse
Affiliation(s)
- Mario Bonomini
- Department of Medicine, Institute of Nephrology, G. d'Annunzio University, Chieti-Pescara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bonomini M, Pandolfi A, Di Liberato L, Di Silvestre S, Cnops Y, Di Tomo P, D'Arezzo M, Monaco MP, Giardinelli A, Di Pietro N, Devuyst O, Arduini A. L-carnitine is an osmotic agent suitable for peritoneal dialysis. Kidney Int 2011; 80:645-54. [PMID: 21525850 DOI: 10.1038/ki.2011.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excessive intraperitoneal absorption of glucose during peritoneal dialysis has both local cytotoxic and systemic metabolic effects. Here we evaluate peritoneal dialysis solutions containing L-carnitine, an osmotically active compound that induces fluid flow across the peritoneum. In rats, L-carnitine in the peritoneal cavity had a dose-dependent osmotic effect similar to glucose. Analogous ultrafiltration and small solute transport characteristics were found for dialysates containing 3.86% glucose, equimolar L-carnitine, or combinations of both osmotic agents in mice. About half of the ultrafiltration generated by L-carnitine reflected facilitated water transport by aquaporin-1 (AQP1) water channels of endothelial cells. Nocturnal exchanges with 1.5% glucose and 0.25% L-carnitine in four patients receiving continuous ambulatory peritoneal dialysis were well tolerated and associated with higher net ultrafiltration than that achieved with 2.5% glucose solutions, despite the lower osmolarity of the carnitine-containing solution. Addition of L-carnitine to endothelial cells in culture increased the expression of AQP1, significantly improved viability, and prevented glucose-induced apoptosis. In a standard toxicity test, the addition of L-carnitine to peritoneal dialysis solution improved the viability of L929 fibroblasts. Thus, our studies support the use of L-carnitine as an alternative osmotic agent in peritoneal dialysis.
Collapse
Affiliation(s)
- Mario Bonomini
- Department of Medicine, Institute of Nephrology, University G. d'Annunzio, Chieti-Pescara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tagnaouti M, Branger B, Ied C, Reboul P, Zabadani B, Vecina F, Deschodt G, Carolfi J, Prudhomme M, Godlevski G. La sclérose péritonéale encapsulante : aspects actuels. Nephrol Ther 2009; 5:122-33. [DOI: 10.1016/j.nephro.2008.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/08/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|
15
|
Diaz-Buxo JA. Case report of encapsulating peritoneal sclerosis: the interpretation of functional and structural peritoneal changes. Blood Purif 2008; 26:12-7. [PMID: 18182789 DOI: 10.1159/000110557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A case report describing the evolution of encapsulating peritoneal sclerosis is presented to illustrate some of the functional and structural peritoneal membrane changes characteristic of this complication of peritoneal dialysis. The appropriate monitoring of peritoneal transport rates and ultrafiltration, together with attention to clinical signs and symptoms, are essential to the early diagnosis of peritoneal membrane deterioration. Recent reports suggest that timely interventions such as a peritoneal membrane rest period may effectively halt the progression of these functional and structural changes. While the optimal surgical and pharmacological treatment of encapsulating peritoneal sclerosis remains uncertain, the latest literature provides a certain degree of optimism.
Collapse
|
16
|
Fusshoeller A. Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol 2008; 23:19-25. [PMID: 17638023 DOI: 10.1007/s00467-007-0541-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/26/2007] [Accepted: 05/21/2007] [Indexed: 11/28/2022]
Abstract
In long-term peritoneal dialysis (PD) morphological and functional changes of the peritoneal membrane are common. Sub-mesothelial fibrosis, angiogenesis and vasculopathy are typical histomorphological alterations of the peritoneal membrane, which, to a certain degree, are induced by uremia and recurrent peritonitis. The most important causative factor, however, represents the chronic exposure to PD solutions. Glucose, glucose degradation products and advanced glycation end-products (AGEs) via different pathways induce inflammation, fibrosis and angiogenesis. As a functional consequence ultrafiltration failure due to peritoneal hyperpermeability and an increased effective peritoneal surface area represents a major clinical problem. An insufficient function of the water-selective aquaporin 1 (AQP-1) channel may also be causative for inadequate ultrafiltration. A rare but life-threatening complication of long-term PD is encapsulating peritoneal sclerosis (EPS). For both impaired AQP-1 function and EPS, the long-term effects of PD fluids are believed to be responsible, even though the mechanisms are not yet understood. The avoidance of glucose and modern PD fluids with fewer glucose degradation products, as well as first pharmacological attempts may help to preserve the peritoneal membrane in the long term.
Collapse
Affiliation(s)
- Andreas Fusshoeller
- Department of Nephrology, Heinrich Heine-University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
17
|
Abstract
Extensive experience with chronic peritoneal dialysis has identified a series of functional and anatomical pathologic changes in the peritoneal membrane thought to be the result of repeated insults from bioincompatible solutions. Laboratory and clinical findings from recent investigations often conflict and are difficult to interpret due to variations in methodologies, animal models, study designs, and data analyses. The principal pathophysiologic mechanisms identified thus far are oxidative stress, inflammation, and their consequences. Many substances used to neutralize the action of these insults, prevent formation of toxic compounds, or directly alter solute and water transport to improve peritoneal membrane performance have been studied. We herein review the most promising of these substances or those that deserve attention because their use has contributed to better understanding of peritoneal pathophysiology. Most peritoneal solution additives have proved useless due to their toxicity and undesirable effects, ineffectiveness, or manufacturing limitations. A few substances deserve more attention, particularly those capable of restoring negatively charged membrane sites, those that somehow improve permselectivity, scavengers of oxidants, and advanced glycation end-product inhibitors and breakers. Recent publications on clinical experience with neutral pH, low glucose degradation product (GDP) peritoneal solutions, although few and preliminary, are most encouraging. The virtual elimination of GDPs in these novel solutions will probably preclude the need for GDP scavengers and inhibitors. Nonetheless, there is room for further significant improvement in solution biocompatibility and for compounds that may restore peritoneal function.
Collapse
Affiliation(s)
- Jose A Diaz-Buxo
- Home Therapies Development, Fresenius Medical Care North America, Lexington Massachusetts, USA.
| | | |
Collapse
|