1
|
Bornoff J, Najar A, Fresiello L, Finocchiaro T, Perkins IL, Gill H, Cookson AN, Fraser KH. Fluid-structure interaction modelling of a positive-displacement Total Artificial Heart. Sci Rep 2023; 13:5734. [PMID: 37059748 PMCID: PMC10104863 DOI: 10.1038/s41598-023-32141-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
For those suffering from end-stage biventricular heart failure, and where a heart transplantation is not a viable option, a Total Artificial Heart (TAH) can be used as a bridge to transplant device. The Realheart TAH is a four-chamber artificial heart that uses a positive-displacement pumping technique mimicking the native heart to produce pulsatile flow governed by a pair of bileaflet mechanical heart valves. The aim of this work was to create a method for simulating haemodynamics in positive-displacement blood pumps, using computational fluid dynamics with fluid-structure interaction to eliminate the need for pre-existing in vitro valve motion data, and then use it to investigate the performance of the Realheart TAH across a range of operating conditions. The device was simulated in Ansys Fluent for five cycles at pumping rates of 60, 80, 100 and 120 bpm and at stroke lengths of 19, 21, 23 and 25 mm. The moving components of the device were discretised using an overset meshing approach, a novel blended weak-strong coupling algorithm was used between fluid and structural solvers, and a custom variable time stepping scheme was used to maximise computational efficiency and accuracy. A two-element Windkessel model approximated a physiological pressure response at the outlet. The transient outflow volume flow rate and pressure results were compared against in vitro experiments using a hybrid cardiovascular simulator and showed good agreement, with maximum root mean square errors of 15% and 5% for the flow rates and pressures respectively. Ventricular washout was simulated and showed an increase as cardiac output increased, with a maximum value of 89% after four cycles at 120 bpm 25 mm. Shear stress distribution over time was also measured, showing that no more than [Formula: see text]% of the total volume exceeded 150 Pa at a cardiac output of 7 L/min. This study showed this model to be both accurate and robust across a wide range of operating points, and will enable fast and effective future studies to be undertaken on current and future generations of the Realheart TAH.
Collapse
Affiliation(s)
- Joseph Bornoff
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Azad Najar
- Scandinavian Real Heart AB, Västerås, Sweden
| | - Libera Fresiello
- Faculty of Science and Technology, University of Twente, Twente, The Netherlands
| | | | | | - Harinderjit Gill
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, UK.
- Centre for Therapeutic Innovation, University of Bath, Bath, UK.
| |
Collapse
|
2
|
Fang P, Du J, Boraschi A, Bozzi S, Redaelli A, Schmid Daners M, Kurtcuoglu V, Consolo F, de Zélicourt D. Insights Into the Low Rate of In-Pump Thrombosis With the HeartMate 3: Does the Artificial Pulse Improve Washout? Front Cardiovasc Med 2022; 9:775780. [PMID: 35360020 PMCID: PMC8962620 DOI: 10.3389/fcvm.2022.775780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/02/2022] [Indexed: 01/14/2023] Open
Abstract
While earlier studies reported no relevant effect of the HeartMate 3 (HM3) artificial pulse (AP) on bulk pump washout, its effect on regions with prolonged residence times remains unexplored. Using numerical simulations, we compared pump washout in the HM3 with and without AP with a focus on the clearance of the last 5% of the pump volume. Results were examined in terms of flush-volume (Vf, number of times the pump was flushed with new blood) to probe the effect of the AP independent of changing flow rate. Irrespective of the flow condition, the HM3 washout scaled linearly with flush volume up to 70% washout and slowed down for the last 30%. Flush volumes needed to washout 95% of the pump were comparable with and without the AP (1.3–1.4 Vf), while 99% washout required 2.1–2.2 Vf with the AP vs. 2.5 Vf without the AP. The AP enhanced washout of the bend relief and near-wall regions. It also transiently shifted or eliminated stagnation regions and led to rapid wall shear stress fluctuations below the rotor and in the secondary flow path. Our results suggest potential benefits of the AP for clearance of fluid regions that might elicit in-pump thrombosis and provide possible mechanistic rationale behind clinical data showing very low rate of in-pump thrombosis with the HM3. Further optimization of the AP sequence is warranted to balance washout efficacy while limiting blood damage.
Collapse
Affiliation(s)
- Peng Fang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jianjun Du
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Andrea Boraschi
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Filippo Consolo
- Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Università Vita Salute San Raffaele, Milano, Italy
| | - Diane de Zélicourt
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
- *Correspondence: Diane de Zélicourt
| |
Collapse
|
3
|
Martinolli M, Cornat F, Vergara C. Computational Fluid-Structure Interaction Study of a New Wave Membrane Blood Pump. Cardiovasc Eng Technol 2021; 13:373-392. [PMID: 34773241 DOI: 10.1007/s13239-021-00584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Wave membrane blood pumps (WMBP) are novel pump designs in which blood is propelled by means of wave propagation by an undulating membrane. In this paper, we computationally studied the performance of a new WMBP design (J-shaped) for different working conditions, in view of potential applications in human patients. METHODS Fluid-structure interaction (FSI) simulations were conducted in 3D pump geometries and numerically discretized by means of the extended finite element method (XFEM). A contact model was introduced to capture membrane-wall collisions in the pump head. Mean flow rate and membrane envelope were determined to evaluate hydraulic performance. A preliminary hemocompatibility analysis was performed via calculation of fluid shear stress. RESULTS Numerical results, validated against in vitro experimental data, showed that the hydraulic output increases when either the frequency or the amplitude of membrane oscillations were higher, with limited increase in the fluid stresses, suggesting good hemocompatibility properties. Also, we showed better performance in terms of hydraulic power with respect to a previous design of the pump. We finally studied an operating point which achieves physiologic flow rate target at diastolic head pressure of 80 mmHg. CONCLUSION A new design of WMBP was computationally studied. The proposed FSI model with contact was employed to predict the new pump hydraulic performance and it could help to properly select an operating point for the upcoming first-in-human trials.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
4
|
Kelly NS, McCree D, Fresiello L, Brynedal Ignell N, Cookson AN, Najar A, Perkins IL, Fraser KH. Video-based valve motion combined with computational fluid dynamics gives stable and accurate simulations of blood flow in the Realheart total artificial heart. Artif Organs 2021; 46:57-70. [PMID: 34460941 DOI: 10.1111/aor.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with end-stage, biventricular heart failure, and for whom heart transplantation is not an option, may be given a Total Artificial Heart (TAH). The Realheart® is a novel TAH which pumps blood by mimicking the native heart with translation of an atrioventricular plane. The aim of this work was to create a strategy for using Computational Fluid Dynamics (CFD) to simulate haemodynamics in the Realheart®, including motion of the atrioventricular plane and valves. METHODS The accuracies of four different computational methods for simulating fluid-structure interaction of the prosthetic valves were assessed by comparison of chamber pressures and flow rates with experimental measurements. The four strategies were: prescribed motion of valves opening and closing at the atrioventricular plane extrema; simulation of fluid-structure interaction of both valves; prescribed motion of the mitral valve with simulation of fluid-structure interaction of the aortic valve; motion of both valves prescribed from video analysis of experiments. RESULTS The most accurate strategy (error in ventricular pressure of 6%, error in flow rate of 5%) used video-prescribed motion. With the Realheart operating at 80 bpm, the power consumption was 1.03 W, maximum shear stress was 15 Pa, and washout of the ventricle chamber after 4 cycles was 87%. CONCLUSIONS This study, the first CFD analysis of this novel TAH, demonstrates that good agreement between computational and experimental data can be achieved. This method will therefore enable future optimisation of the geometry and motion of the Realheart®.
Collapse
Affiliation(s)
| | - Danny McCree
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Libera Fresiello
- Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | | | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Azad Najar
- Scandinavian Real Heart AB, Västerås, Sweden
| | | | | |
Collapse
|
5
|
Martinolli M, Biasetti J, Zonca S, Polverelli L, Vergara C. Extended finite element method for fluid-structure interaction in wave membrane blood pump. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3467. [PMID: 33884770 DOI: 10.1002/cnm.3467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Numerical simulations of cardiac blood pump systems are integral to the optimization of device design, hydraulic performance and hemocompatibility. In wave membrane blood pumps, blood propulsion arises from the wave propagation along an oscillating immersed membrane, which generates small pockets of fluid that are pushed towards the outlet against an adverse pressure gradient. We studied the Fluid-Structure Interaction between the oscillating membrane and the blood flow via three-dimensional simulations using the Extended Finite Element Method (XFEM), an unfitted numerical technique that avoids remeshing by using a fluid fixed mesh. Our three-dimensional numerical simulations in a realistic pump geometry highlighted, for the first time in this field of application, that XFEM is a reliable strategy to handle complex industrial problems. Moreover, they showed the role of the membrane deformation in promoting a blood flow towards the outlet despite an adverse pressure gradient. We also simulated the pump system at different pressure conditions and we validated the numerical results against in-vitro experimental data.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Stefano Zonca
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
6
|
Sargent CR, Perkins IL, Kanamarlapudi V, Moriarty C, Ali S. Hemodilution Increases the Susceptibility of Red Blood Cells to Mechanical Shear Stress During In Vitro Hemolysis Testing. ASAIO J 2021; 67:632-641. [PMID: 32947284 DOI: 10.1097/mat.0000000000001280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The American Society for Testing and Materials (ASTM) F1841 standard for the assessment of hemolysis in blood pumps recommends using phosphate-buffered saline (PBS) for hemodilution to standardize hematocrit (HCT). However, PBS increases red blood cell mechanical fragility and hemolysis. Herein, we investigated diluents and dilutions during in vitro testing to reduce hemodilution bias when assessing hemolysis. Bovine blood was diluted with either PBS or PBS + 4/6 g% bovine serum albumin (BSA) to a 70/90% blood dilution, or to an HCT of 30% ± 2%, and pumped with the CentriMag or RotaFlow under hemodynamic conditions. Separately, bovine and human blood were subjected to ventricular assist device-like shear stress using a vortex. Plasma-free hemoglobin levels, normalized milligram index of hemolysis (mgNIH), and protein concentrations were analyzed. Hemolysis depended on the diluent and final blood concentration. Seventy percent of blood diluted with PBS alone caused significantly greater hemolysis than PBS + 4/6 g% BSA. However, at 90% blood, PBS + 4/6 g% BSA caused significantly greater hemolysis than PBS alone. Hence, a positive correlation between mgNIH and hemodilution was observed with PBS and a negative correlation with PBS + 4g% BSA. PBS alone significantly reduced the total protein concentration. Hemodilution with BSA maintains protein concentration within a physiologic range and reduces bias during hemolysis testing at high blood dilutions. Thus, American Society for Testing and Materials standards could consider including BSA as a diluent, when and as required: where large dilution is required (<83%) use PBS + 4 g% BSA, otherwise use PBS alone.
Collapse
Affiliation(s)
- Christian R Sargent
- From the Calon Cardio-Technology Ltd, ILS2, Singleton Park, Swansea, United Kingdom
- Swansea University Medical School, ILS1, Singleton Park, Swansea, United Kingdom
| | - Ina Laura Perkins
- Swansea University Medical School, ILS1, Singleton Park, Swansea, United Kingdom
- R&D, Scandinavian Real Heart AB, Vaesteras, Sweden
| | | | - Christopher Moriarty
- From the Calon Cardio-Technology Ltd, ILS2, Singleton Park, Swansea, United Kingdom
| | - Sabrina Ali
- From the Calon Cardio-Technology Ltd, ILS2, Singleton Park, Swansea, United Kingdom
| |
Collapse
|
7
|
Torner B, Konnigk L, Abroug N, Wurm H. Turbulence and turbulent flow structures in a ventricular assist device-A numerical study using the large-eddy simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3431. [PMID: 33336869 DOI: 10.1002/cnm.3431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Numerical flow simulations that analyze the turbulent flow characteristics within a turbopump are important for optimizing the efficiency of such machines. In the case of ventricular assist devices (VADs), turbulent flow characteristics must be also examined in order to improve hemocompatibility. Turbulence increases the shear stresses in the VAD flow, which can lead to an increased damage to the transported blood components. Therefore, an understanding of the turbulent flow patterns and their significance for the numerical blood damage prediction is particularly important for flow optimizations in VADs in order to identify and thus minimize flow regions where blood could be damaged due to high turbulent stresses. Nevertheless, the turbulence occurring in VADs and the local turbulent structures that lead to increased turbulent stresses have not yet been analyzed in detail in these machines. Therefore, this study aims to investigate the turbulence in an axial VAD in a comprehensive and double tracked way. First, the flow in an axial VAD was computed using the large-eddy simulation method, and it was verified that the majority of the turbulence was directly resolved by the simulation. Then, the turbulent flow state of the VAD was quantified globally. For this purpose, a self-designed evaluation method, the power loss analysis, was used. Subsequently, local flow regions and flow structures were identified where significant turbulent stresses prevail. It will be shown that the identified regions are universal and will also occur in other axial blood pumps as well, for example, in the HeartMate II.
Collapse
Affiliation(s)
- Benjamin Torner
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Lucas Konnigk
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Nada Abroug
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Hendrik Wurm
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Dai WF, Wu P, Liu GM. A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device. Int J Artif Organs 2020; 44:471-480. [PMID: 33258722 DOI: 10.1177/0391398820975405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thrombosis and its related events have become a major concern during the development and optimization of ventricular assist devices (VADs, also called blood pumps), and limit their clinical use and economic benefits. Attempts have been made to model the thrombosis formation, considering hemodynamic and biochemical processes. However, the complexities and computational expenses are prohibitive. Blood stasis is one of the key factors which may lead to the formation of thrombosis and excessive thromboembolic risks for patients. This study proposed a novel approach for modeling blood stasis, based on a two-phase flow principle. The locations of blood residual can be tracked over time, so that regions of blood stasis can be identified. The blood stasis in an axial blood pump is simulated under various working conditions, the results agree well with the experimental results. In contrast, conventional hemodynamic metrics such as velocity, time-averaged wall shear stress (TAWSS), and relative residence time (RRT), were contradictory in judging risk of blood stasis and thrombosis, and inconsistent with experimental results. We also found that the pump operating at the designed rotational speed is less prone to blood stasis. The model provides an efficient and fast alternative for evaluating blood stasis and thrombosis potential in blood pumps, and will be a valuable addition to the tools to support the design and improvement of VADs.
Collapse
Affiliation(s)
- Wei-Feng Dai
- Artificial Organ Laboratory, Bio-Manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Peng Wu
- Artificial Organ Laboratory, Bio-Manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Mao Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Park J, Oki K, Hesselmann F, Geirsson A, Kaufmann T, Bonde P. Biologically Inspired, Open, Helicoid Impeller Design for Mechanical Circulatory Assist. ASAIO J 2020; 66:899-908. [PMID: 32740350 DOI: 10.1097/mat.0000000000001090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rotating impeller actuated by electromagnet has been a key technological innovation which surpassed earlier limitations of pulsatile pumps. Current impeller design, however, is alien to the functional unit of the human circulatory system and remains a potential cause of adverse prothrombotic events such as hemolysis or pump thrombosis by forcing blood cells to pass over a narrow space available within the rapidly alternating blades attached along its central hub, creating fundamentally a nonphysiologic flow, especially for miniaturized percutaneous blood pumps. Here, we present a biologically inspired, open, helicoid (BiO-H) impeller design for a circulatory assist device that has a fundamentally different footprint from the conventional Archimedean screw-based impeller designs by implementing new design features inspired by an avian right atrioventricular valve. Design parameters including an inner diameter, helix height, overall height, helix revolutions/pitch, blade length, blade thickness, introductory blade angle, number of blades, and blade shape were optimized for maximum output volumetric flow rate through the parametric analysis in computational fluid dynamics simulation. BiO-H shows an improved flow path with 2.25-fold less cross-sectional area loss than the conventional impeller designs. BiO-H with a diameter of 15 mm resulted in a maximum flow rate of 25 L/min at 15,000 revolutions per minute in simulation and showed further improved pressure-flow relationship in benchtop experiments. The design shows promise in increasing flow and could serve as a new impeller design for future blood pumps.
Collapse
Affiliation(s)
- Jiheum Park
- From the Bonde Artificial Heart Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
- Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Kristi Oki
- Connecticut Center for Advanced Technology, Inc., East Hartford, Connecticut
| | - Felix Hesselmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany. Kristi Oki was formerly at Bonde Artificial Heart Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Arnar Geirsson
- Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Tim Kaufmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany. Kristi Oki was formerly at Bonde Artificial Heart Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Pramod Bonde
- From the Bonde Artificial Heart Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
- Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. J Thorac Cardiovasc Surg 2020; 159:1519-1527.e1. [DOI: 10.1016/j.jtcvs.2019.06.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/19/2023]
|
11
|
Classification of the Frequency, Severity, and Propagation of Thrombi in the HeartMate II Left Ventricular Assist Device. ASAIO J 2020; 66:992-999. [DOI: 10.1097/mat.0000000000001151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
12
|
Torner B, Konnigk L, Wurm FH. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device. Int J Artif Organs 2019; 42:735-747. [PMID: 31328604 DOI: 10.1177/0391398819861395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The blood damage prediction in rotary blood pumps is an important procedure to evaluate the hemocompatibility of such systems. Blood damage is caused by shear stresses to the blood cells and their exposure times. The total impact of an equivalent shear stress can only be taken into account when turbulent stresses are included in the blood damage prediction. The aim of this article was to analyze the influence of the turbulent stresses on the damage prediction in a rotary blood pump's flow. Therefore, the flow in a research blood pump was computed using large eddy simulations. A highly turbulence-resolving setup was used in order to directly resolve most of the computed stresses. The simulations were performed at the design point and an operation point with lower flow rate. Blood damage was predicted using three damage models (volumetric analysis of exceeded stress thresholds, hemolysis transport equation, and hemolysis approximation via volume integral) and two shear stress definitions (with and without turbulent stresses). For both simulations, turbulent stresses are the dominant stresses away from the walls. Here, they act in a range between 9 and 50 Pa. Nonetheless, the mean stresses in the proximity of the walls reach levels, which are one order of magnitude higher. Due to this, the turbulent stresses have a small impact on the results of the hemolysis prediction. Yet, turbulent stresses should be included in the damage prediction, since they belong to the total equivalent stress definition and could impact the damage on proteins or platelets.
Collapse
Affiliation(s)
- Benjamin Torner
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Lucas Konnigk
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | | |
Collapse
|
13
|
Wiegmann L, Thamsen B, de Zélicourt D, Granegger M, Boës S, Schmid Daners M, Meboldt M, Kurtcuoglu V. Fluid Dynamics in the HeartMate 3: Influence of the Artificial Pulse Feature and Residual Cardiac Pulsation. Artif Organs 2018; 43:363-376. [PMID: 30129977 DOI: 10.1111/aor.13346] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
Abstract
Ventricular assist devices (VADs), among which the HeartMate 3 (HM3) is the latest clinically approved representative, are often the therapy of choice for patients with end-stage heart failure. Despite advances in the prevention of pump thrombosis, rates of stroke and bleeding remain high. These complications are attributed to the flow field within the VAD, among other factors. One of the HM3's characteristic features is an artificial pulse that changes the rotor speed periodically by 4000 rpm, which is meant to reduce zones of recirculation and stasis. In this study, we investigated the effect of this speed modulation on the flow fields and stresses using high-resolution computational fluid dynamics. To this end, we compared Eulerian and Lagrangian features of the flow fields during constant pump operation, during operation with the artificial pulse feature, and with the effect of the residual native cardiac cycle. We observed good washout in all investigated situations, which may explain the low incidence rates of pump thrombosis. The artificial pulse had no additional benefit on scalar washout performance, but it induced rapid variations in the flow velocity and its gradients. This may be relevant for the removal of deposits in the pump. Overall, we found that viscous stresses in the HM3 were lower than in other current VADs. However, the artificial pulse substantially increased turbulence, and thereby also total stresses, which may contribute to clinically observed issues related to hemocompatibility.
Collapse
Affiliation(s)
- Lena Wiegmann
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Bente Thamsen
- Pediatric Cardiovascular Surgery, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Switzerland.,Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Diane de Zélicourt
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Marcus Granegger
- Pediatric Cardiovascular Surgery, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Stefan Boës
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Khoo DPY, Cookson AN, Gill HS, Fraser KH. Normal fluid stresses are prevalent in rotary ventricular assist devices: A computational fluid dynamics analysis. Int J Artif Organs 2018; 41:738-751. [DOI: 10.1177/0391398818792757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite the evolution of ventricular assist devices, ventricular assist device patients still suffer from complications due to the damage to blood by fluid dynamic stress. Since rotary ventricular assist devices are assumed to exert mainly shear stress, studies of blood damage are based on shear flow experiments. However, measurements and simulations of cell and protein deformation show normal and shear stresses deform, and potentially damage, cells and proteins differently. The aim was to use computational fluid dynamics to assess the prevalence of normal stress, in comparison with shear stress, in rotary ventricular assist devices. Our calculations showed normal stresses do occur in rotary ventricular assist devices: the fluid volumes experiencing normal stress above 10 Pa were 0.011 mL (0.092%) and 0.027 mL (0.39%) for the HeartWare HVAD and HeartMate II (HMII), and normal stresses over 100 Pa were present. However, the shear stress volumes were up to two orders of magnitude larger than the normal stress volumes. Considering thresholds for red blood cell and von Willebrand factor deformation by normal and shear stresses, the fluid volumes causing deformation by normal stress were between 2.5 and 5 times the size of those causing deformation by shear stress. The exposure times to the individual normal stress deformation regions were around 1 ms. The results clearly show, for the first time, that while blood within rotary ventricular assist devices experiences more shear stress at much higher magnitudes as compared with normal stress, there is sufficient normal stress exposure present to cause deformation of, and potentially damage to, the blood components. This study is the first to quantify the fluid stress components in real blood contacting devices.
Collapse
Affiliation(s)
- Dominica PY Khoo
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | | | | |
Collapse
|