1
|
Stevanović M, Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024; 16:670. [PMID: 38794332 PMCID: PMC11125366 DOI: 10.3390/pharmaceutics16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | | |
Collapse
|
2
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
3
|
Boldrini DE. Starch-based materials for drug delivery in the gastrointestinal tract-A review. Carbohydr Polym 2023; 320:121258. [PMID: 37659802 DOI: 10.1016/j.carbpol.2023.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 09/04/2023]
Abstract
Starch is a natural copolymer with unique physicochemical characteristics. Historically, it has been physically, chemically, or enzymatically modified to obtain ad-hoc functional properties for its use in different applications. In this context, the use of starch-based materials in drug delivery systems (DDSs) has gained great attention mainly because it is cheap, biodegradable, biocompatible, and renewable. This paper reviews the state of the art in starch-based materials design for their use in drug-controlled release with internal stimulus responsiveness; i.e., pH, temperature, colonic microbiota, or enzymes; specifically, those orally administered for its release in the gastrointestinal tract (GIT). Physical-chemical principles in the design of these materials taking into account their response to a particular stimulus are discussed. The relationship between the type of DDSs structure, starch modification routes, and the corresponding drug release profiles are systematically analyzed. Furthermore, the challenges and prospects of starch-based materials for their use in stimulus-responsive DDSs are also debated.
Collapse
Affiliation(s)
- Diego E Boldrini
- Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Mozhdehbakhsh Mofrad Y, Shamloo A. The effect of conductive aligned fibers in an injectable hydrogel on nerve tissue regeneration. Int J Pharm 2023; 645:123419. [PMID: 37717716 DOI: 10.1016/j.ijpharm.2023.123419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Injectable hydrogels are a promising treatment option for nervous system injuries due to the difficulty to replace lost cells and nervous factors but research on injectable conductive hydrogels is limited and these scaffolds have poor electromechanical properties. This study developed a chitosan/beta-glycerophosphate/salt hydrogel and added conductive aligned nanofibers (polycaprolactone/gelatin/single-wall carbon nanotube (SWCNT)) for the first time and inspired by natural nerve tissue to improve their biochemical and biophysical properties. The results showed that the degradation rate of hydrogels is proportional to the regrowth of axons and these hydrogels' mechanical (hydrogels without nanofibers or SWCNTs and hydrogels containing these additions have the same Young's modulus as the brain and spinal cord or peripheral nerves, respectively) and electrical properties, and the interconnective structure of the scaffolds have the ability to support cells.
Collapse
Affiliation(s)
- Yasaman Mozhdehbakhsh Mofrad
- Nano-Bio Engineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9161, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bio Engineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9161, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| |
Collapse
|
5
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
7
|
Zhao Z, Wang Z, Garcia-Campayo J, Perez HM. The Dissemination Strategy of an Urban Smart Medical Tourism Image by Big Data Analysis Technology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15330. [PMID: 36430048 PMCID: PMC9690489 DOI: 10.3390/ijerph192215330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The advanced level of medical care is closely related to the development and popularity of a city, and it will also drive the development of tourism. The smart urban medical system based on big data analysis technology can greatly facilitate people's lives and increase the flow of people in the city, which is of great significance to the city's tourism image dissemination and branding. The medical system, with eight layers of architecture including access, medical cloud service governance, the medical cloud service resource, the platform's public service, the platform's runtime service, infrastructure, and the overall security and monitoring system of the platform, is designed based on big data analysis technology. Chengdu city is taken as an example based on big data analysis technology to position the dissemination of an urban tourism image. Quantitative analysis and questionnaire methods are used to study the effect of urban smart medical system measurement and tourism image communication positioning based on big data analysis technology. The results show that the smart medical cloud service platform of the urban smart medical system, as a public information service system, supports users in obtaining medical services through various terminal devices without geographical restrictions. The smart medical cloud realizes service aggregation and data sharing compared to the traditional isolated medical service system. Cloud computing has been used as the technical basis, making the scalability and reliability of the system have unprecedented improvements. This paper discusses how to effectively absorb, understand, and use tools in the big data environment, extract information from data, find effective information, make image communication activities accurate, reduce the cost, and improve the efficiency of city image communication. The research shows that big data analysis technology improves patients' medical experience, improves medical efficiency, and alleviates urban medical resource allocation to a certain extent. This technology improves people's satisfaction with the dissemination of urban tourism images, makes urban tourism image dissemination activities accurate, reduces the cost of urban tourism image dissemination, and improves the efficiency of urban tourism image dissemination. The combination of the two can provide a reference for developing urban smart medical care and disseminating a tourism image.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Performing Arts and Culture, The Catholic University of Korea, Bucheon-si 14662, Republic of Korea
- School of Journalism and Communication, University of Chinese Academy of Social Sciences, Beijing 102488, China
- School of Communication and Film, Hong Kong Baptist University, Hong Kong 999077, China
- College of Educations, Arts and Sciences, Lyceum of the Philippines University-Batangas, Batangas 4200, Philippines
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Zhongwei Wang
- Management School, The University of Sheffield, Sheffield S10 2TN, UK
| | - Javier Garcia-Campayo
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Hector Monzales Perez
- Republic of the Philippines Professional Regulation Commission, Manila 1008, Philippines
| |
Collapse
|
8
|
Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. Polymers (Basel) 2022; 14:polym14224924. [PMID: 36433050 PMCID: PMC9693219 DOI: 10.3390/polym14224924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The rising significance of the field of biopolymers has driven the rapid progress of this distinctive class of polymeric materials in the past decades. Biodegradable polymers have acquired much attention because they play an essential role in humans' lives due to their specific tunable electrical conductivity and biodegradability characteristics, making them fascinating in many applications. Herein, we debated the recent progress in developing biodegradable polymers and their applications. Initially, we introduce the basics of conducting and biodegradable polymers, trailed by debates about the effective strategies currently used to develop biopolymers. Special importance will focus on the uses of biodegradable polymers in drug delivery and tissue engineering, as well as wound healing, demonstrating the recent findings, and uses of several biodegradable polymers in modern biological uses. In this review, we have provided comprehensive viewpoints on the latest progress of the challenges and future prospects involving biodegradable polymers' advancement and commercial applications.
Collapse
|
9
|
Lin L, Jiang S, Yang J, Qiu J, Jiao X, Yue X, Ke X, Yang G, Zhang L. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Int J Bioprint 2022; 9:637. [PMID: 36844245 PMCID: PMC9947488 DOI: 10.18063/ijb.v9i1.637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
212Three-dimensional (3D) printing is a modern, computer-aided, design-based technology that allows the layer-by-layer deposition of 3D structures. Bioprinting, a 3D printing technology, has attracted increasing attention because of its capacity to produce scaffolds for living cells with extreme precision. Along with the rapid development of 3D bioprinting technology, the innovation of bio-inks, which is recognized as the most challenging aspect of this technology, has demonstrated tremendous promise for tissue engineering and regenerative medicine. Cellulose is the most abundant polymer in nature. Various forms of cellulose, nanocellulose, and cellulose derivatives, including cellulose ethers and cellulose esters, are common bioprintable materials used to develop bio-inks in recent years, owing to their biocompatibility, biodegradability, low cost, and printability. Although various cellulose-based bio-inks have been investigated, the potential applications of nanocellulose and cellulose derivative-based bio-inks have not been fully explored. This review focuses on the physicochemical properties of nanocellulose and cellulose derivatives as well as the recent advances in bio-ink design for 3D bioprinting of bone and cartilage. In addition, the current advantages and disadvantages of these bio-inks and their prospects in 3D printing-based tissue engineering are comprehensively discussed. We hope to offer helpful information for the logical design of innovative cellulose-based materials for use in this sector in the future.
Collapse
Affiliation(s)
- Lan Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Songli Jiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jun Yang
- Department of Adult Reconstruction, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jiandi Qiu
- Department of Adult Reconstruction, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiaoyi Jiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xusong Yue
- Department of Adult Reconstruction, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiurong Ke
- Department of Adult Reconstruction, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Guojing Yang
- Department of Adult Reconstruction, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China,Department of Adult Reconstruction, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China, Corresponding author: Lei Zhang ()
| |
Collapse
|
10
|
Wu J, Shaidani S, Theodossiou SK, Hartzell EJ, Kaplan DL. Localized, on-demand, sustained drug delivery from biopolymer-based materials. Expert Opin Drug Deliv 2022; 19:1317-1335. [PMID: 35930000 PMCID: PMC9617770 DOI: 10.1080/17425247.2022.2110582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Local drug delivery facilitiates higher concentrations of drug molecules at or near the treatment site to enhance treatment efficiency and reduce drug toxicity and other systemic side effects. However, local drug delivery systems face challenges in terms of encapsulation, delivery, and controlled release of therapeutics. AREAS COVERED We provide an overview of naturally derived biopolymer-based drug delivery systems for localized, sustained, and on-demand treatment. We introduce the advantages and limitations of these systems for drug encapsulation, delivery, and local release, as well as recent applications. EXPERT OPINION Naturally derived biopolymers like cellulose, silk fibroin, chitosan, alginate, hyaluronic acid, and gelatin are good candidates for localized drug delivery because they are readily chemically modified, biocompatible, biodegradable (with the generation of metabolically compatible degradation products), and can be processed in aqueous and ambient environments to maintain the bioactivity of various therapeutics. The tradeoff between the effective treatment dosage and the response by local healthy tissue should be balanced during the design of these delivery systems. Future directions will be focused on strategies to design tunable and controlled biodegradation rates, as well as to explore commercial utility in substituting biopolymer-based systems for currently utilized synthetic polymers for implants for drug delivery.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sawnaz Shaidani
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sophia K. Theodossiou
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Emily J. Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| |
Collapse
|
11
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
12
|
Electrospinning-Generated Nanofiber Scaffolds Suitable for Integration of Primary Human Circulating Endothelial Progenitor Cells. Polymers (Basel) 2022; 14:polym14122448. [PMID: 35746031 PMCID: PMC9229005 DOI: 10.3390/polym14122448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
The extracellular matrix is fundamental in order to maintain normal function in many organs such as the blood vessels, heart, liver, or bones. When organs fail or experience injury, tissue engineering and regenerative medicine elicit the production of constructs resembling the native extracellular matrix, supporting organ restoration and function. In this regard, is it possible to optimize structural characteristics of nanofiber scaffolds obtained by the electrospinning technique? This study aimed to produce partially degraded collagen (gelatin) nanofiber scaffolds, using the electrospinning technique, with optimized parameters rendering different morphological characteristics of nanofibers, as well as assessing whether the resulting scaffolds are suitable to integrate primary human endothelial progenitor cells, obtained from peripheral blood with further in vitro cell expansion. After different assay conditions, the best nanofiber morphology was obtained with the following electrospinning parameters: 15 kV, 0.06 mL/h, 1000 rpm and 12 cm needle-to-collector distance, yielding an average nanofiber thickness of 333 ± 130 nm. Nanofiber scaffolds rendered through such electrospinning conditions were suitable for the integration and proliferation of human endothelial progenitor cells.
Collapse
|
13
|
Alshaikh RA, Waeber C, Ryan KB. Polymer based sustained drug delivery to the ocular posterior segment: barriers and future opportunities for the treatment of neovascular pathologies. Adv Drug Deliv Rev 2022; 187:114342. [PMID: 35569559 DOI: 10.1016/j.addr.2022.114342] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
There is an increasing momentum in research and pharmaceutical industry communities to design sustained, non-invasive delivery systems to treat chronic neovascular ocular diseases that affect the posterior segment of the eye including age-related macular degeneration and diabetic retinopathy. Current treatments include VEGF blockers, which have revolutionized the standard of care for patients, but their maximum therapeutic benefit is hampered by the need for recurrent and invasive administration procedures. Currently approved delivery systems intended to address these limitations exploit polymer technology to regulate drug release in a sustained manner. Here, we critically review sustained drug delivery approaches for the treatment of chronic neovascular diseases affecting the ocular posterior segment, with a special emphasis on novel and polymeric technologies spanning the spectrum of preclinical and clinical investigation, and those approved for treatment. The mechanism by which each formulation imparts sustained release, the impact of formulation characteristics on release and foreign body reaction, and special considerations related to the translation of these systems are discussed.
Collapse
Affiliation(s)
| | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland; SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
14
|
Shibata M, Terashima T, Koga T. Micellar Aggregation and Thermogelation of Amphiphilic Random Copolymers in Water Hierarchically Dependent on Chain Length. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Mathur A, Kharbanda OP, Koul V, Dinda AK, Anwar MF, Singh S. Fabrication and evaluation of antimicrobial biomimetic nanofibre coating for improved dental implant bio-seal: An in vitro study. J Periodontol 2021; 93:1578-1588. [PMID: 34855256 DOI: 10.1002/jper.21-0255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 09/26/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND A weak implant-soft tissue interface may lead to bacterial ingression, breakdown of underlying tissues, and eventually implant failure. This study proposes a surface modification technique of titanium alloy (Ti), using a nano-biopolymer scaffold to enhance soft tissue attachment in dental implants. METHODS Gelatin (20% w/v) embedded with 10±2 nm silver nanoparticles (AgNPs) was electrospun to form a Gelatin Electrospun Mat (GEM) scaffold, bonded to Ti alloy surface using chemical surface functionalization. Antimicrobial activity of AgNPs was tested against representative Gram-positive (S. aureus) and Gram-negative bacteria (E. coli) at 4, 24, and 48 hours (h) and after embedding in scaffold at 48 h. Cytotoxicity analysis (MTT assay) was carried out using the 3T3 mouse fibroblast cell line at 24 and 72 h for two groups: Control (unmodified Ti disc) and Experimental (GEM embedded with AgNPs); and further validated by scanning electron microscopy (SEM). RESULTS The AgNPs-embedded GEM showed good antimicrobial activity at 48 h, with the AgNPs showing complete (99.99%) inhibition of bacterial colony counts at 24 h and 48 h. Cell viability and proliferation over the GEM modified Ti discs were seen to be significantly increased (p < 0.05) at 72 h as compared to control. SEM images revealed intimate spreading of fibroblasts, with differentiated cell morphology and pseudopodial processes, indicative of enhanced fibroblastic adhesion, growth, and differentiation over the scaffold. CONCLUSION Results show good antifouling properties and biocompatibility of the fabricated coating, making it a promising strategy to reduce post-operative infections and peri-implant diseases in Ti dental implants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Apoorva Mathur
- Centre for Dental Education and Research (CDER, ), All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Om Prakash Kharbanda
- Dr. CG Pandit, National Chair of ICMR, Room 206, Department of Plastic Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Veena Koul
- PhD Professor Emeritus, Centre for Biomedical Engineering, IIT Delhi, India
| | - Amit Kumar Dinda
- ICMR Emeritus Scientist, Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Suchita Singh
- Scientist C (Clinical Operations), Div. of ECD, ITRC, Indian Council for Medical Research, New Delhi, India
| |
Collapse
|
16
|
Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, De Meulenaer B, Mantovani D, Van Vlierberghe S, Dubruel P. Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: A superior alternative to methacrylated gelatin? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112460. [PMID: 34702535 DOI: 10.1016/j.msec.2021.112460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The present work targets the development of collagen-based hydrogel precursors, functionalized with photo-crosslinkable methacrylamide moieties (COL-MA), for vascular tissue engineering (vTE) applications. The developed materials were physico-chemically characterized in terms of crosslinking kinetics, degree of modification/conversion, swelling behavior, mechanical properties and in vitro cytocompatibility. The collagen derivatives were benchmarked to methacrylamide-modified gelatin (GEL-MA), due to its proven track record in the field of tissue engineering. To the best of our knowledge, this is the first paper in its kind comparing these two methacrylated biopolymers for vTE applications. For both gelatin and collagen, two derivatives with varying degrees of substitutions (DS) were developed by altering the added amount of methacrylic anhydride (MeAnH). This led to photo-crosslinkable derivatives with a DS of 74 and 96% for collagen, and a DS of 73 and 99% for gelatin. The developed derivatives showed high gel fractions (i.e. 74% and 84%, for the gelatin derivatives; 87 and 83%, for the collagen derivatives) and an excellent crosslinking efficiency. Furthermore, the results indicated that the functionalization of collagen led to hydrogels with tunable mechanical properties (i.e. storage moduli of [4.8-9.4 kPa] for the developed COL-MAs versus [3.9-8.4 kPa] for the developed GEL-MAs) along with superior cell-biomaterial interactions when compared to GEL-MA. Moreover, the developed photo-crosslinkable collagens showed superior mechanical properties compared to extracted native collagen. Therefore, the developed photo-crosslinkable collagens demonstrate great potential as biomaterials for vTE applications.
Collapse
Affiliation(s)
- Nele Pien
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium; Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Margot Vansteenland
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, Block B, 9000 Gent, Belgium
| | - Madalina Albu
- Department of Collagen Research, National Research & Development Institute for Textiles and Leather, Str. Patrascanu Lucretiu, 16, Bucuresti-Sector 3, Bucuresti 030508, București, Romania
| | - Bruno De Meulenaer
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, Block B, 9000 Gent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium.
| |
Collapse
|
17
|
Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers (Basel) 2021; 13:2729. [PMID: 34451268 PMCID: PMC8399127 DOI: 10.3390/polym13162729] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Research regarding the use of biopolymers has been of great interest to scientists, the medical community, and the industry especially in recent years. Initially used for food applications, the special properties extended their use to the pharmaceutical and medical industries. The practical applications of natural drug encapsulation materials have emerged as a result of the benefits of the use of biopolymers as edible coatings and films in the food industry. This review highlights the use of polysaccharides in the pharmaceutical industries and as encapsulation materials for controlled drug delivery systems including probiotics, focusing on their development, various applications, and benefits. The paper provides evidence in support of research studying the use of biopolymers in the development of new drug delivery systems, explores the challenges and limitations in integrating polymer-derived materials with product delivery optimization, and examines the host biological/metabolic parameters that can be used in the development of new applications.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Liliana Anchidin-Norocel
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
| | - Roxana Filip
- Hipocrat Clinical Laboratory, 720003 Suceava, Romania;
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
18
|
A Brief Insight to the Electrophoretic Deposition of PEEK-, Chitosan-, Gelatin-, and Zein-Based Composite Coatings for Biomedical Applications: Recent Developments and Challenges. SURFACES 2021. [DOI: 10.3390/surfaces4030018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophoretic deposition (EPD) is a powerful technique to assemble metals, polymer, ceramics, and composite materials into 2D, 3D, and intricately shaped implants. Polymers, proteins, and peptides can be deposited via EPD at room temperature without affecting their chemical structures. Furthermore, EPD is being used to deposit multifunctional coatings (i.e., bioactive, antibacterial, and biocompatible coatings). Recently, EPD was used to architect multi-structured coatings to improve mechanical and biological properties along with the controlled release of drugs/metallic ions. The key characteristics of EPD coatings in terms of inorganic bioactivity and their angiogenic potential coupled with antibacterial properties are the key elements enabling advanced applications of EPD in orthopedic applications. In the emerging field of EPD coatings for hard tissue and soft tissue engineering, an overview of such applications will be presented. The progress in the development of EPD-based polymeric or composite coatings, including their application in orthopedic and targeted drug delivery approaches, will be discussed, with a focus on the effect of different biologically active ions/drugs released from EPD deposits. The literature under discussion involves EPD coatings consisting of chitosan (Chi), zein, polyetheretherketone (PEEK), and their composites. Moreover, in vitro and in vivo investigations of EPD coatings will be discussed in relation to the current main challenge of orthopedic implants, namely that the biomaterial must provide good bone-binding ability and mechanical compatibility.
Collapse
|
19
|
Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers (Basel) 2021; 13:polym13132086. [PMID: 34202828 PMCID: PMC8272167 DOI: 10.3390/polym13132086] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Some of thermo-responsive polysaccharides, namely, cellulose, xyloglucan, and chitosan, and protein-like gelatin or elastin-like polypeptides can exhibit temperature dependent sol–gel transitions. Due to their biodegradability, biocompatibility, and non-toxicity, such biomaterials are becoming popular for drug delivery and tissue engineering applications. This paper aims to review the properties of sol–gel transition, mechanical strength, drug release (bioavailability of drugs), and cytotoxicity of stimuli-responsive hydrogel made of thermo-responsive biopolymers in drug delivery systems. One of the major applications of such thermos-responsive biopolymers is on textile-based transdermal therapy where the formulation, mechanical, and drug release properties and the cytotoxicity of thermo-responsive hydrogel in drug delivery systems of traditional Chinese medicine have been fully reviewed. Textile-based transdermal therapy, a non-invasive method to treat skin-related disease, can overcome the poor bioavailability of drugs from conventional non-invasive administration. This study also discusses the future prospects of stimuli-responsive hydrogels made of thermo-responsive biopolymers for non-invasive treatment of skin-related disease via textile-based transdermal therapy.
Collapse
|
20
|
Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021; 26:molecules26123752. [PMID: 34202959 PMCID: PMC8234156 DOI: 10.3390/molecules26123752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
This article provides a systematic review of the crosslinking strategies used to produce microgel particles in microfluidic chips. Various ionic crosslinking methods for the gelation of charged polymers are discussed, including external gelation via crosslinkers dissolved or dispersed in the oil phase; internal gelation methods using crosslinkers added to the dispersed phase in their non-active forms, such as chelating agents, photo-acid generators, sparingly soluble or slowly hydrolyzing compounds, and methods involving competitive ligand exchange; rapid mixing of polymer and crosslinking streams; and merging polymer and crosslinker droplets. Covalent crosslinking methods using enzymatic oxidation of modified biopolymers, photo-polymerization of crosslinkable monomers or polymers, and thiol-ene “click” reactions are also discussed, as well as methods based on the sol−gel transitions of stimuli responsive polymers triggered by pH or temperature change. In addition to homogeneous microgel particles, the production of structurally heterogeneous particles such as composite hydrogel particles entrapping droplet interface bilayers, core−shell particles, organoids, and Janus particles are also discussed. Microfluidics offers the ability to precisely tune the chemical composition, size, shape, surface morphology, and internal structure of microgels by bringing multiple fluid streams in contact in a highly controlled fashion using versatile channel geometries and flow configurations, and allowing for controlled crosslinking.
Collapse
|
21
|
Li N, Guo R, Zhang ZJ. Bioink Formulations for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:630488. [PMID: 33614614 PMCID: PMC7892967 DOI: 10.3389/fbioe.2021.630488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike the conventional techniques used to construct a tissue scaffolding, three-dimensional (3D) bioprinting technology enables fabrication of a porous structure with complex and diverse geometries, which facilitate evenly distributed cells and orderly release of signal factors. To date, a range of cell-laden materials, such as natural or synthetic polymers, have been deployed by the 3D bioprinting technique to construct the scaffolding systems and regenerate substitutes for the natural extracellular matrix (ECM). Four-dimensional (4D) bioprinting technology has attracted much attention lately because it aims to accommodate the dynamic structural and functional transformations of scaffolds. However, there remain challenges to meet the technical requirements in terms of suitable processability of the bioink formulations, desired mechanical properties of the hydrogel implants, and cell-guided functionality of the biomaterials. Recent bioprinting techniques are reviewed in this article, discussing strategies for hydrogel-based bioinks to mimic native bone tissue-like extracellular matrix environment, including properties of bioink formulations required for bioprinting, structure requirements, and preparation of tough hydrogel scaffolds. Stimulus mechanisms that are commonly used to trigger the dynamic structural and functional transformations of the scaffold are analyzed. At the end, we highlighted the current challenges and possible future avenues of smart hydrogel-based bioink/scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Na Li
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Díaz-Zepeda D, Peralta-Rodríguez RD, Puente-Urbina B, Cortez-Mazatan G, Meléndez-Ortiz HI. pH responsive chitosan-coated microemulsions as drug delivery systems. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1857761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Daniela Díaz-Zepeda
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, Mexico
| | - René D. Peralta-Rodríguez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, Mexico
| | - Bertha Puente-Urbina
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, Mexico
| | - Gladis Cortez-Mazatan
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, Mexico
| | | |
Collapse
|
23
|
Le-Deygen IM, Musatova OE, Orlov VN, Melik-Nubarov NS, Grozdova ID. Poly(Ethylene Glycol) Interacts with Hyaluronan in Aqueous Media. Biomacromolecules 2020; 22:681-689. [PMID: 33325680 DOI: 10.1021/acs.biomac.0c01504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report here the first evidence for the interaction of poly(ethylene glycol) (PEG) with hyaluronan (HA) in aqueous solutions. PEG-HA complexes (Kapp = 45,000 ± 8000 M-1) contained about 3.3 ± 0.1 of ethylene glycol units per disaccharide of HA. The carboxyl of the D-glucuronic acid and the amide of the N-acetyl-D-glucosamine did not participate in PEG binding. Similar experiments performed with dextran and monosaccharides showed that multiple free primary hydroxyls regularly distributed along the polysaccharide chain are necessary for PEG binding. Another novelty of our study is contraction of HA upon PEG binding. The effect was observed with HA in solution or adsorbed on positively charged liposomes. The thickness of the HA layer on the liposomes decreased 2-fold upon PEG addition. HA compaction induced by PEG may underlie the changes in the plasma membrane properties and resealing of mechanical injuries induced by Pluronics.
Collapse
Affiliation(s)
- Irina M Le-Deygen
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie gory 1, build. 3, Moscow 119991, Russia
| | - Oxana E Musatova
- Polymer Department, Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie gory 1, build. 3, Moscow 119991, Russia
| | - Victor N Orlov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie gory 1, Building 40, Moscow 119991, Russia
| | - Nikolay S Melik-Nubarov
- Polymer Department, Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie gory 1, build. 3, Moscow 119991, Russia
| | - Irina D Grozdova
- Polymer Department, Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie gory 1, build. 3, Moscow 119991, Russia
| |
Collapse
|
24
|
Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 2020; 168:163-174. [PMID: 33309656 DOI: 10.1016/j.ijbiomac.2020.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022]
Abstract
The polysaccharide-based pH-responsive compounds, namely, N,N,N-trimethyl chitosan (TMC), polyethylene glycolated hyaluronic acid (PEG-HA), and polysaccharide-based nano-conjugate of hyaluronic acid, chitosan oligosaccharide and alanine [HA-Ala-Chito(oligo)] were chemically synthesized using biopolymers chitosan and hyaluronic acid, and applied here to observe the changes in morphology, pH-stability, mechanical and drug-release behavior, and cytotoxicity of thermo-responsive polymer: Poloxamer 407 (PF127)-based drug delivery systems for traditional Chinese medicine Cortex Moutan (CM). The thermo-responsive hydrogel of PF127 loaded with CM (GelC) was used as control. The dual-responsive (pH/temperature) hydrogels: PF127/TMC/PEG-HA (Gel1) and PF127/HA-Ala-Chito(oligo) (Gel2) showed improved mechanical behavior as obtained by rheology and mechanical agitation study, and pH-stability under various external pH conditions, and those improvements occurred due to the addition of polysaccharide-based pH-responsive compounds in the systems. Both, Gel1 and Gel2 showed better morphology than GelC as obtained by SEM or TEM suggesting that interaction of polysaccharide-based pH-responsive compounds with PF127 in either gel or sol state gave better porous network structure in the hydrogels or more dispersed micellar arrangements in sol-state, respectively. Gel1 showed the highest cumulative drug release (86.5%) after 5 days under mild acidic condition (pH 6.4) suggesting that release behavior of a hydrogel drug carrier was dependent on morphology, mechanical behavior, and pH-stability. The transdermal release (ex-vivo) results indicated that gallic acid, the active marker of CM passed through porcine ear skin and all the formulations showed more or less similar transdermal release properties. The hydrogels loaded with CM showed no cytotoxicity (cell viability >90.0%) on human HaCaT keratinocytes within concentration range of 0.0-20.0 μg/ml as obtained by MTT assay, and cell viability was more than 100% at a concentration of 20.0 μg/ml for Gel2. The formulations without loaded drug namely, Gel1-CM and Gel2-CM exhibited strong anti-bacterial action against gram positive bacteria Staphylococcus aureus.
Collapse
|
25
|
Bonetti L, De Nardo L, Farè S. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:486-513. [DOI: 10.1089/ten.teb.2020.0202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| |
Collapse
|
26
|
Harmon MD, Ramos DM, Nithyadevi D, Bordett R, Rudraiah S, Nukavarapu SP, Moss IL, Kumbar SG. Growing a backbone - functional biomaterials and structures for intervertebral disc (IVD) repair and regeneration: challenges, innovations, and future directions. Biomater Sci 2020; 8:1216-1239. [PMID: 31957773 DOI: 10.1039/c9bm01288e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Back pain and associated maladies can account for an immense amount of healthcare cost and loss of productivity in the workplace. In particular, spine related injuries in the US affect upwards of 5.7 million people each year. The degenerative disc disease treatment almost always arises due to a clinical presentation of pain and/or discomfort. Preferred conservative treatment modalities include the use of non-steroidal anti-inflammatory medications, physical therapy, massage, acupuncture, chiropractic work, and dietary supplements like glucosamine and chondroitin. Artificial disc replacement, also known as total disc replacement, is a treatment alternative to spinal fusion. The goal of artificial disc prostheses is to replicate the normal biomechanics of the spine segment, thereby preventing further damage to neighboring sections. Artificial functional disc replacement through permanent metal and polymer-based components continues to evolve, but is far from recapitulating native disc structure and function, and suffers from the risk of unsuccessful tissue integration and device failure. Tissue engineering and regenerative medicine strategies combine novel material structures, bioactive factors and stem cells alone or in combination to repair and regenerate the IVD. These efforts are at very early stages and a more in-depth understanding of IVD metabolism and cellular environment will also lead to a clearer understanding of the native environment which the tissue engineering scaffold should mimic. The current review focusses on the strategies for a successful regenerative scaffold for IVD regeneration and the need for defining new materials, environments, and factors that are so finely tuned in the healthy human intervertebral disc in hopes of treating such a prevalent degenerative process.
Collapse
Affiliation(s)
- Matthew D Harmon
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - D Nithyadevi
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Rosalie Bordett
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Isaac L Moss
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
27
|
Bonetti L, De Nardo L, Variola F, Fare' S. Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels. SOFT MATTER 2020; 16:5577-5587. [PMID: 32406462 DOI: 10.1039/d0sm00269k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methylcellulose (MC) hydrogels, undergoing sol-gel reversible transition upon temperature changes, lend themselves to smart system applications. However, their reduced stability in aqueous environment and unsatisfactory mechanical properties limit the breadth of their possible applications. Here, a crosslinking strategy based on citric acid (CA) was developed: exploiting three crosslinking parameters (CA concentration, crosslinking time, and crosslinking temperature) by a design of experiment approach, optimized crosslinked MC hydrogels (MC-L, MC-M, MC-H) were obtained and characterized. Swelling tests in water revealed the effectiveness of CA crosslinking in modulating the water uptake of MC hydrogels. Both theoretical and experimental analyses showed an increase in the crosslinking density by the rationale selection of process parameters. The extent of sol-gel transition was assessed by swelling tests, Raman spectroscopy and rheological analyses. MC-M samples demonstrated to preserve their thermo-responsive behavior around their lower critical solution temperature (LCST), while showing increased stability and enhanced mechanical properties when compared to pristine MC hydrogels.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy. and National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Silvia Fare'
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy. and National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| |
Collapse
|
28
|
Aronson JK, Heneghan C, Ferner RE. Medical Devices: Definition, Classification, and Regulatory Implications. Drug Saf 2020; 43:83-93. [PMID: 31845212 DOI: 10.1007/s40264-019-00878-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose the following definition of a medical device: "A contrivance designed and manufactured for use in healthcare, and not solely medicinal or nutritional." Current regulatory classifications of medical devices are complex and designed primarily for regulators. We propose a simpler classification, based on (1) the site of application of the device, (2) the time scale of its use, and (3) whether it has an external power source. The regulation of medical devices is less well developed than the regulation of medicinal products, which it could follow more closely. In particular, devices that incorporate medicines should be required to meet the same regulatory standards as medicinal products. This would remove the anomaly that some delivery systems that incorporate medicines are classified as devices while other similar systems that deliver the same medicines are classified as medicinal products. Some improvements might also result from more widespread use of registries, such as those used for prosthetic joint replacements. Registries would allow both a prospective examination of the performance of high-risk devices and a retrospective analysis when signals from other sources of information suggest problems. Those who apply for a marketing authorization for a new device should have to assure regulators of its quality of manufacture, safety, and efficacy before licensing. Even the most straightforward device should be shown to be useable in practice. Trials on patients, or at least simulations of use in the real world, should be practicable for most devices.
Collapse
Affiliation(s)
- Jeffrey K Aronson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK. .,West Midlands Centre for Adverse Drug Reactions, City Hospital, Birmingham, UK.
| | - Carl Heneghan
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Robin E Ferner
- West Midlands Centre for Adverse Drug Reactions, City Hospital, Birmingham, UK.,Institute of Clinical Sciences, University of Birmingham, Birmingham, UK.,Institute of Cardiovascular Medicine, University College London, London, UK
| |
Collapse
|
29
|
Darge HF, Andrgie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019; 133:545-563. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023]
|
30
|
In vivo study of microarc oxidation coated Mg alloy as a substitute for bone defect repairing: Degradation behavior, mechanical properties, and bone response. Colloids Surf B Biointerfaces 2019; 181:349-359. [PMID: 31158697 DOI: 10.1016/j.colsurfb.2019.05.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/20/2022]
Abstract
Large segmental bone defect healing remains a great challenge in clinic. Limited by the source of autograft, bone graft substitute tends to be the research focus. In the present study, we propose a strategy by using microarc oxidation (MAO) coated magnesium scaffold as a large segmental bone graft substitute, utilizing its combination of strength, degradability, and controllable corrosion rate. Bare substrate, 10 μm and 20 μm thick MAO coated Mg scaffolds were implanted into ulna bone of New Zealand white rabbits, employing a 15 mm wide bone defect model. The biocompatibility and in vivo degradation of the implants, the bone defect healing response, and mechanical properties of the injured bone were investigated. The surface cytocompatibility evaluation results show that the MAO coated Mg are more suitable for cell proliferation. Micro-CT results show that abundant new bone formed and initially bridged the 15 mm gap at 8 weeks. Histological results indicate the newly formed bone was full of maturation at 12 weeks. Three point bending tests reveal that the injured bone possessed sufficient mechanical strength after 12 weeks. A 3-step in vivo degradation mechanism was proposed for the implants. In summary, we observed an actual trial of 15 mm wide bone defect healing where the newly formed bone bridged the bone gap at 8 weeks successfully. These data suggest a great potential of MAO coated magnesium to be a bone graft substitute.
Collapse
|
31
|
Liu H, Chen H, Cao F, Peng D, Chen W, Zhang C. Amphiphilic Block Copolymer Poly (Acrylic Acid)-B-Polycaprolactone as a Novel pH-sensitive Nanocarrier for Anti-Cancer Drugs Delivery: In-vitro and In-vivo Evaluation. Polymers (Basel) 2019; 11:E820. [PMID: 31067730 PMCID: PMC6572073 DOI: 10.3390/polym11050820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022] Open
Abstract
Gambogenic acid (GNA) has been demonstrated with outstanding antitumor activity as a potential antitumor drug in recent years. However, the low solubility and deficient bioavailability of GNA seriously hinder its practical application in the clinic area. In this study, a novel amphiphilic block copolymer, poly (acrylic acid)-b-polycaprolactone (PAA-b-PCL) is prepared and assembled into pH-responsive polymeric micelles (PMs) as one mold of drug delivery system (DDS) with unique properties. Relevant investigation on PMs exhibits excellent carrying potential and pH-dependent release performance for GNA. The drug loading capacity (DLC) and drug loading efficiency (DLE) for GNA-loaded PMs can be achieved as high as 15.20 ± 0.07% and 83.67 ± 0.49%, respectively. The in vitro experiments indicate that the GNA releasing time, cytotoxicity, and cellular uptake are significantly enhanced. Especially, the peak concentration (Cmax) and area under the curve (AUC) are promoted sharply in the GNA-loaded PMs concentration-time curve. This study not only provides a novel way to widen the application of anticancer GNA in the future, but also extends the potential of stimuli-responsive copolymers to biomedical applications.
Collapse
Affiliation(s)
- Huanhuan Liu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hong Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Fuhu Cao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Daiyin Peng
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Weidong Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Chuanling Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
32
|
Barbosa JDV, Azevedo JB, Araújo EM, Machado BAS, Hodel KVS, Mélo TJAD. Bionanocomposites of PLA/PBAT/organophilic clay: preparation and characterization. POLIMEROS 2019. [DOI: 10.1590/0104-1428.09018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
|
34
|
Bono N, Tarsini P, Candiani G. BMP-2 and type I collagen preservation in human deciduous teeth after demineralization. J Appl Biomater Funct Mater 2018; 17:2280800018784230. [PMID: 30045659 DOI: 10.1177/2280800018784230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Great interest has recently been focused on tooth and tooth derivatives as suitable substrates for the treatment of alveolar bone defects. Here, we propose the use of demineralized baby teeth (BT) as potential grafting materials for bone augmentation procedures. METHODS Particles of human BT (Ø < 1 mm) were demineralized by means of a chemical/thermal treatment. Demineralized BT particles were thoroughly characterized by scanning electron microscopy/energy dispersive X-ray analyses to evaluate the effects of the demineralization on BT topography and mineral phase composition, and by enzyme-linked immunosorbent assays (ELISA) to quantify collagen and bone morphogenetic protein-2 (BMP-2) protein contents. The response of SAOS-2 cells to exogenous BMP-2 stimulation was evaluated to identify the minimum BMP-2 concentration able to induce osteodifferentiation in vitro (alkaline phosphatase (ALP) activity). RESULTS The demineralization treatment led to a dramatic decrease in relative Ca and P content (%) of ≈75% with respect to the native BT particles, while preserving native protein conformation and activity. Interestingly, the demineralization process led to a rise in the bioavailability of BMP-2 in BT particles, as compared to the untreated counterparts. The BMP-2 content found in demineralized BT was also proved to be very effective in enhancing ALP activity, thus in the osteodifferentiation of SAOS-2 cells in vitro, as confirmed by cell experiments performed upon exogenously added BMP-2. CONCLUSIONS In this study we demonstrate that the BMP-2 content found in demineralized BT is very effective in inducing cell osteodifferentiation, and strengthens the idea that BTs are very attractive bioactive materials for bone-grafting procedures.
Collapse
Affiliation(s)
- Nina Bono
- 1 Politecnico di Milano Research Unit, National Interuniversity Consortium of Materials Science and Technology - INSTM, Milan, Italy
| | - Paolo Tarsini
- 2 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- 1 Politecnico di Milano Research Unit, National Interuniversity Consortium of Materials Science and Technology - INSTM, Milan, Italy.,2 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|