1
|
Mazhar N, Islam MS, Raza MZ, Mahin SMKH, Islam MR, Chowdhury MEH, Al-Ali A, Agouni A, Yalcin HC. Comparative Analysis of In Vitro Pumps Used in Cardiovascular Investigations: Focus on Flow Generation Principles and Characteristics of Generated Flows. Bioengineering (Basel) 2024; 11:1116. [PMID: 39593776 PMCID: PMC11591817 DOI: 10.3390/bioengineering11111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
A comprehensive analysis of in vitro pumps used in cardiovascular research is provided in this review, with a focus on the characteristics of generated flows and principles of flow generations. The cardiovascular system, vital for nutrient circulation and waste removal, generates complex hemodynamics critical for endothelial cell function. Cardiovascular diseases (CVDs) could be caused by the disturbances in these flows, including aneurysms, atherosclerosis, and heart defects. In vitro systems simulate hemodynamic conditions on cultured cells in the laboratory to study and evaluate these diseases to advance therapies. Pumps used in these systems can be classified into contact and non-contact types. Contact pumps, such as piston and gear pumps, can generate higher flow rates, but they have a higher risk of contamination due to the direct interaction of pump with the fluid. Non-contact pumps, such as peristaltic and lab-on-disk centrifugal pumps, minimize contamination risks, but they are limited to lower flow rates. Advanced pumps including piezoelectric and I-Cor diagonal pumps are focused on improving the accuracy of flow replication and long-term stability. The operational principles, advantages, and some disadvantages of these pump categories are evaluated in this review, while providing insights for optimizing in vitro cardiovascular models and advancing therapeutic strategies against CVDs. The outcomes of the review elaborate the importance of selecting an appropriate pump system, to accurately replicate cardiovascular flow patterns.
Collapse
Affiliation(s)
- Noaman Mazhar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
| | - Munshi Sajidul Islam
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
| | - Muhammad Zohaib Raza
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
| | - SM. Khaled Hossain Mahin
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.H.M.); (M.R.I.); (M.E.H.C.)
| | - Mohammed Riazul Islam
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.H.M.); (M.R.I.); (M.E.H.C.)
| | - Muhammad E. H. Chowdhury
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (S.K.H.M.); (M.R.I.); (M.E.H.C.)
| | - Abdulla Al-Ali
- Computer Science and Engineering Department, Qatar University, Doha 2713, Qatar;
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (N.M.); (M.S.I.); (M.Z.R.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
2
|
Hacham WS, Khir AW. Manufacturing an artificial arterial tree using 3D printing. Heliyon 2024; 10:e31764. [PMID: 38867983 PMCID: PMC11168309 DOI: 10.1016/j.heliyon.2024.e31764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Models of the arterial network are useful in studying mechanical cardiac assist devices as well as complex pathological states that are difficult to investigate in-vivo otherwise. Earlier work of artificial arterial tree (AAT) have been constructed to include some of the major arteries and their branches for in-vitro experiments which focused on the aorta, using dipping or painting techniques, which resulted in inaccuracies and inconsistent wall thickness. Therefore, the aim of this work is to use 3D printing for manufacturing AAT based on physiologically correct dimensions of the largest 45 segments of the human arterial tree. A volume ratio mix of silicone rubber (98 %) and a catalyst (2 %) was used to create the walls of the AAT. To validate, the AAT was connected at its inlet to a piston pump that mimicked the heart and capillary tubes at the outlets that mimicked arterial resistances. The capillary tubes were connected to a reservoir that collected the water which was the fluid used in testing the closed-loop hydraulic system. Young's modulus of the AAT walls was determined using tensile testing of different segments of various wall thickness. The developed AAT produced pressure, diameter and flow rate waveforms that are similar to those observed in-vivo. The technique described here is low cost, may be used for producing arterial trees to facilitate testing mechanical cardiac assist devices and studying hemodynamic investigations.
Collapse
Affiliation(s)
- Wisam S. Hacham
- Mechatronics Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ashraf W. Khir
- Department of Engineering, Durham University, Durham, United Kingdom
| |
Collapse
|
3
|
Agrafiotis E, Zimpfer D, Mächler H, Holzapfel GA. Review of Systemic Mock Circulation Loops for Evaluation of Implantable Cardiovascular Devices and Biological Tissues. J Endovasc Ther 2024:15266028241235876. [PMID: 38528650 DOI: 10.1177/15266028241235876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
CLINICAL IMPACT On needs-based ex vivo monitoring of implantable devices or tissues/organs in cardiovascular simulators provides new insights and paves new paths for device prototypes. The insights gained could not only support the needs of patients, but also inform engineers, scientists and clinicians about undiscovered aspects of diseases (during routine monitoring). We analyze seminal and current work and highlight a variety of opportunities for developing preclinical tools that would improve strategies for future implantable devices. Holistically, mock circulation loop studies can bridge the gap between in vivo and in vitro approaches, as well as clinical and laboratory settings, in a mutually beneficial manner.
Collapse
Affiliation(s)
| | - Daniel Zimpfer
- Division of Cardiac Surgery, Medical University of Graz, Graz, Austria
| | - Heinrich Mächler
- Division of Cardiac Surgery, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Kuroda T, Miyagi C, Polakowski AR, Flick CR, Kuban BD, Fukamachi K, Karimov JH. Preservation of pulsatility with universal ventricular assist device: In vitro assessment for biventricular support. Artif Organs 2024; 48:182-190. [PMID: 37787082 DOI: 10.1111/aor.14656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The objective of this study was to assess the pulsatility preservation capability of the universal ventricular assist device (UVAD) when used as a biventricular assist device (BVAD). This evaluation was conducted through an in vitro experiment, utilizing a pulsatile biventricular circulatory mock loop. METHODS Two UVAD pumps were tested in a dual setup (BVAD) in the circulatory model with the simulated conditions of left heart failure (HF), right HF, and moderate/severe biventricular HF (BHF). The total flow, aortic pulse pressure, the pulse augmentation factor (PAF), the energy-equivalent pressure (EEP), and the surplus hemodynamic energy (SHE) were observed at various pump speeds to evaluate the pulsatility. RESULTS The aortic pulse pressure increased from the baseline (without pump) in all simulated hemodynamic conditions. The PAF ranged from 17%-35% in healthy, left HF, right HF, and mild BHF conditions, with the highest PAF of 90% being observed in the severe BHF condition. The EEP correlated with LVAD flow in all groups (R2 = 0.87-0.97) and increased from the baseline in all cases. The SHE peaked at approximately 5-6 L/min of LVAD support and was likely to decrease at higher LVAD pump flow. The largest decrease in SHE from the baseline, 53%, was observed in the mild BHF conditions with the highest LVAD and RVAD support. CONCLUSIONS The UVAD successfully demonstrated the ability to preserve pulsatility in vitro, and to optimize the cardiac output, as an isolated circulatory support device option (RVAD or LVAD) and when used for BVAD support.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine R Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Cleveland, Ohio, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Li Y, Li Y, Li J, Chen H. Wall shear gradient dependent thrombosis studied in blood-on-a-chip with stenotic, branched, and valvular constructions. BIOMICROFLUIDICS 2023; 17:034101. [PMID: 37187669 PMCID: PMC10171887 DOI: 10.1063/5.0149884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Thrombosis is the leading cause of death, while the effect of the shear flow on the formation of thrombus in vascular constructions has not been thoroughly understood, and one of the challenges is to observe the origination of thrombus with a controlled flow field. In this work, we use blood-on-a-chip technology to mimic the flow conditions in coronary artery stenosis, neonatal aortic arch, and deep venous valve. The flow field is measured by the microparticle image velocimeter (μPIV). In the experiment, we find that the thrombus often originates at the constructions of stenosis, bifurcation, and the entrance of valve, where the flow stream lines change suddenly, and the maximum wall shear rate gradient appears. Using the blood-on-a-chip technology, the effect of the wall shear rate gradients on the formation of the thrombus has been illustrated, and the blood-on-a-chip is demonstrated to be a perspective tool for further studies on the flow-induced formation of thrombosis.
Collapse
Affiliation(s)
- Yan Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjian Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haosheng Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Xu KW, Gao Q, Wan M, Zhang K. Mock circulatory loop applications for testing cardiovascular assist devices and in vitro studies. Front Physiol 2023; 14:1175919. [PMID: 37123281 PMCID: PMC10133581 DOI: 10.3389/fphys.2023.1175919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The mock circulatory loop (MCL) is an in vitro experimental system that can provide continuous pulsatile flows and simulate different physiological or pathological parameters of the human circulation system. It is of great significance for testing cardiovascular assist device (CAD), which is a type of clinical instrument used to treat cardiovascular disease and alleviate the dilemma of insufficient donor hearts. The MCL installed with different types of CADs can simulate specific conditions of clinical surgery for evaluating the effectiveness and reliability of those CADs under the repeated performance tests and reliability tests. Also, patient-specific cardiovascular models can be employed in the circulation of MCL for targeted pathological study associated with hemodynamics. Therefore, The MCL system has various combinations of different functional units according to its richful applications, which are comprehensively reviewed in the current work. Four types of CADs including prosthetic heart valve (PHV), ventricular assist device (VAD), total artificial heart (TAH) and intra-aortic balloon pump (IABP) applied in MCL experiments are documented and compared in detail. Moreover, MCLs with more complicated structures for achieving advanced functions are further introduced, such as MCL for the pediatric application, MCL with anatomical phantoms and MCL synchronizing multiple circulation systems. By reviewing the constructions and functions of available MCLs, the features of MCLs for different applications are summarized, and directions of developing the MCLs are suggested.
Collapse
Affiliation(s)
- Ke-Wei Xu
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
| | - Qi Gao
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
- *Correspondence: Qi Gao,
| | - Min Wan
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| | - Ke Zhang
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| |
Collapse
|
7
|
Karimov JH, Miyagi C, Flick CR, Polakowski AR, Kuban BD, Kuroda T, Horvath DW, Fukamachi K, Starling RC. Biventricular circulatory support using single-device and dual-device configurations: Initial pump characterization in simulated heart failure model. Front Cardiovasc Med 2023; 10:1045656. [PMID: 36910535 PMCID: PMC9994815 DOI: 10.3389/fcvm.2023.1045656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Objective Severe biventricular heart failure (BHF) can be remedied using a biventricular assist device (BVAD). Two devices are currently in development: a universal ventricular assist device (UVAD), which will be able to assist either the left, right, or both ventricles, and a continuous-flow total artificial heart (CFTAH), which replaces the entire heart. In this study, the in vitro hemodynamic performances of two UVADs are compared to a CFTAH acting as a BVAD. Methods For this experiment, a biventricular mock circulatory loop utilizes two pneumatic pumps (Abiomed AB5000™, Danvers, MA, USA), in conjunction with a dual-output driver, to create heart failure (HF) conditions (left, LHF; right, RHF; biventricular, BHF). Systolic BHF for four different situations were replicated. In each situation, CFTAH and UVAD devices were installed and operated at two distinct speeds, and cannulations for ventricular and atrial connections were evaluated. Results Both CFTAH and UVAD setups achieved our recommended hemodynamic criteria. The dual-UVAD arrangement yielded a better atrial balance to alleviate LHF and RHF. For moderate and severe BHF scenarios, CFTAH and dual UVADs both created excellent atrial pressure balance. Conversely, when CFTAH was atrial cannulated for LHF and RHF, the needed atrial pressure balance was not met. Conclusion Comprehensive in vitro testing of two different BVAD setups exhibited self-regulation and exceptional pump performance for both (single- and dual-device) BHF support scenarios. For treating moderate and severe BHF, UVAD and CFTAH both functioned well with respect to atrial pressure regulation and cardiac output. Though, the dual-UVAD setup yielded a better atrial pressure balance in all BHF testing scenarios.
Collapse
Affiliation(s)
- Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christine R Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dennis W Horvath
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,R1 Engineering LLC, Euclid, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States
| | - Randall C Starling
- Department of Cardiovascular Medicine, Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, United States.,Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Cappon F, Wu T, Papaioannou T, Du X, Hsu PL, Khir AW. Mock circulatory loops used for testing cardiac assist devices: A review of computational and experimental models. Int J Artif Organs 2021; 44:793-806. [PMID: 34581613 DOI: 10.1177/03913988211045405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart failure is a major health risk, and with limited availability of donor organs, there is an increasing need for developing cardiac assist devices (CADs). Mock circulatory loops (MCL) are an important in-vitro test platform for CAD's performance assessment and optimisation. The MCL is a lumped parameter model constructed out of hydraulic and mechanical components aiming to simulate the native cardiovascular system (CVS) as closely as possible. Further development merged MCLs and numerical circulatory models to improve flexibility and accuracy of the system; commonly known as hybrid MCLs. A total of 128 MCLs were identified in a literature research until 25 September 2020. It was found that the complexity of the MCLs rose over the years, recent MCLs are not only capable of mimicking the healthy and pathological conditions, but also implemented cerebral, renal and coronary circulations and autoregulatory responses. Moreover, the development of anatomical models made flow visualisation studies possible. Mechanical MCLs showed excellent controllability and repeatability, however, often the CVS was overly simplified or lacked autoregulatory responses. In numerical MCLs the CVS is represented with a higher order of lumped parameters compared to mechanical test rigs, however, complex physiological aspects are often simplified. In hybrid MCLs complex physiological aspects are implemented in the hydraulic part of the system, whilst the numerical model represents parts of the CVS that are too difficult to represent by mechanical components per se. This review aims to describe the advances, limitations and future directions of the three types of MCLs.
Collapse
Affiliation(s)
- Femke Cappon
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| | - Tingting Wu
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Theodore Papaioannou
- Biomedical Engineering Unit, First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Zografou, Greece
| | - Xinli Du
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| | - Po-Lin Hsu
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Ashraf W Khir
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| |
Collapse
|
9
|
Karimov JH, Horvath DJ, Miyamoto T, Kado Y, Gao S, Kuban BD, Polakowski AR, Sale S, Fukamachi K. First In Vivo Experience With Biventricular Circulatory Assistance Using a Single Continuous Flow Pump. Semin Thorac Cardiovasc Surg 2020; 32:456-465. [PMID: 32371175 DOI: 10.1053/j.semtcvs.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Abstract
Biventricular assist device (BVAD) implantation is the treatment of choice in patients with severe biventricular heart failure and cardiogenic shock. Our team has developed a miniaturized continuous flow, double-ended centrifugal pump intended for total artificial heart implant (CFTAH). The purpose of this initial in vivo study was to demonstrate that the scaled-down CFTAH (P-CFTAH) can be appropriate for BVAD support. The P-CFTAH was implanted in 4 acute lambs (average weight, 41.5 ± 2.8 kg) through a median sternotomy. The cannulation was performed through the left and right atria, and cannulae length adjustment was performed for atrial and ventricular cannulation. The BVAD system was tested at 3 pump speeds (3000, 4500, and 6000 rpm). The BVAD performed very well for both atrial and ventricular cannulation within the 3000-6000 rpm range. Stable hemodynamics were maintained after implantation of the P-CFTAH. The self-regulating performance of the system in vivo was demonstrated by the left (LAP) and right (RAP) pressure difference (LAP-RAP) falling predominantly within the range of -5 to 10 mm Hg with variation, in addition to in vitro assessment of left and right heart failure conditions. Left and right pump flows and total flow increased as the BVAD speed was increased. This initial in vivo testing of the BVAD system demonstrated satisfactory device performance and self-regulation for biventricular heart failure support over a wide range of conditions. The BVAD system keeps the atrial pressure difference within bounds and maintains acceptable cardiac output over a wide range of hemodynamic conditions.
Collapse
Affiliation(s)
- Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| | | | - Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yuichiro Kado
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shengqiang Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shiva Sale
- Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|