Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy.
Nat Med 2018;
24:1830-1836. [PMID:
30297910 DOI:
10.1038/s41591-018-0196-2]
[Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/10/2018] [Indexed: 01/17/2023]
Abstract
Peripheral nerve injuries represent a significant problem in public health, constituting 2-5% of all trauma cases1. For severe nerve injuries, even advanced forms of clinical intervention often lead to incomplete and unsatisfactory motor and/or sensory function2. Numerous studies report the potential of pharmacological approaches (for example, growth factors, immunosuppressants) to accelerate and enhance nerve regeneration in rodent models3-10. Unfortunately, few have had a positive impact in clinical practice. Direct intraoperative electrical stimulation of injured nerve tissue proximal to the site of repair has been demonstrated to enhance and accelerate functional recovery11,12, suggesting a novel nonpharmacological, bioelectric form of therapy that could complement existing surgical approaches. A significant limitation of this technique is that existing protocols are constrained to intraoperative use and limited therapeutic benefits13. Herein we introduce (i) a platform for wireless, programmable electrical peripheral nerve stimulation, built with a collection of circuit elements and substrates that are entirely bioresorbable and biocompatible, and (ii) the first reported demonstration of enhanced neuroregeneration and functional recovery in rodent models as a result of multiple episodes of electrical stimulation of injured nervous tissue.
Collapse