1
|
Moerings BGJ, Mes JJ, van Bergenhenegouwen J, Govers C, van Dijk M, Witkamp RF, van Norren K, Abbring S. Dietary Intake of Yeast-Derived β-Glucan and Rice-Derived Arabinoxylan Induces Dose-Dependent Innate Immune Priming in Mice. Mol Nutr Food Res 2024; 68:e2300829. [PMID: 38682734 DOI: 10.1002/mnfr.202300829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Beta-glucans and arabinoxylans are known for their immunostimulatory properties. However, in vivo these have been documented almost exclusively following parenteral administration, underemphasizing oral intake. C57BL/6 mice are fed either a control diet or a diet supplemented with yeast-derived whole β-glucan particle (yWGP) or with rice-derived arabinoxylan (rice bran-1) at a concentration of 1%, 2.5%, or 5% weight/weight (w/w) for 2 weeks. Thereafter, cells from blood, bone marrow, and spleen are collected for ex vivo stimulation with various microbial stimuli. Dietary intake of yWGP for 2 weeks at concentrations of 1% and 2.5% w/w increases ex vivo cytokine production in mouse blood and bone marrow, whereas 5% w/w yWGP shows no effect. In the spleen, cytokine production remains unaffected by yWGP. At a concentration of 1% w/w, rice bran-1 increases ex vivo cytokine production by whole blood, but 2.5% and 5% w/w cause inhibitory effects in bone marrow and spleen. This study demonstrates that dietary yWGP and rice bran-1 induce immune priming in mouse blood and bone marrow, with the strongest effects observed at 1% w/w. Future human trials should substantiate the efficacy of dietary β-glucans and arabinoxylans to bolster host immunity, focusing on dose optimization.
Collapse
Affiliation(s)
- Bart G J Moerings
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | | | - Coen Govers
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | | | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Suzanne Abbring
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| |
Collapse
|
2
|
Moerings BG, Abbring S, Tomassen MM, Schols HA, Witkamp RF, van Norren K, Govers C, van Bergenhenegouwen J, Mes JJ. Rice-derived arabinoxylan fibers are particle size-dependent inducers of trained immunity in a human macrophage-intestinal epithelial cell co-culture model. Curr Res Food Sci 2023; 8:100666. [PMID: 38179220 PMCID: PMC10765302 DOI: 10.1016/j.crfs.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Arabinoxylans have been identified for a wide range of purported health-promoting applications, primarily attributed to its immunomodulatory effects. Previously, we have reported the ability of arabinoxylans to induce non-specific memory in innate immune cells, commonly referred to as "trained innate immunity". In the present study, we investigated the effect of particle size on innate immune training and resilience in primary human macrophages as well as in a more physiologically relevant macrophage-intestinal epithelial cell co-culture model. We demonstrated that smaller (>45 & < 90 μm) compared to larger (>90 μm) particle size fractions of rice bran-derived arabinoxylan preparations have a higher enhancing effect on training and resilience in both models. Smaller particle size fractions elevated TNF-α production in primary macrophages and enhanced Dectin-1 receptor activation in reporter cell lines compared to larger particles. Responses were arabinoxylan source specific as only the rice-derived arabinoxylans showed these immune-supportive effects. This particle size-dependent induction of trained immunity was confirmed in the established co-culture model. These findings demonstrate the influence of particle size on the immunomodulatory potential of arabinoxylans, provide further insight into the structure-activity relationship, and offer new opportunities to optimize the immune-enhancing effects of these dietary fibers.
Collapse
Affiliation(s)
- Bart G.J. Moerings
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Suzanne Abbring
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Monic M.M. Tomassen
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Coen Govers
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Noormohammadi M, Ghorbani Z, Shahinfar H, Shidfar F. Is there any hepatic impact associated with rice bran arabinoxylan compound supplementation? A systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2023; 57:665-675. [PMID: 37739721 DOI: 10.1016/j.clnesp.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Rice Bran Arabinoxylan Compound (RBAC) results from an enzymatic modification of rice bran, which is reported to have immunomodulatory, anti-oxidant, and anti-inflammatory effects by regulating the production of pro-inflammatory cytokines. The current systematic review and meta-analysis aimed to determine the hepatic adverse effects of RBAC by assessing the effect through liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST). METHODS In the present study, the Medline (PubMed), Web of Sciences, and Scopus databases were searched for relevant publications from the beginning to October 2022. The meta-analysis was based on the Mixed effect model to generate the mean effect sizes in weighted mean differences (WMD) and the 95% confidence intervals (95%CI). The heterogeneity was assessed using the Cochrane Chi-squared test, and the analysis of Galbraith plots was applied. RESULTS Subgroup meta-analysis on five eligible randomized controlled trials (n = 239) showed a significant decrease in serum AST regarding RBAC supplementation in powder form (WMD (95%CI) = -3.52 (-5.62, -1.42) U/L; P-value = 0.001, I2 (%) = 46.9; P heterogeneity = 0.170), three months and more supplementation duration (WMD (95%CI) = -3.71 (-5.95, -1.48) U/L; P-value = 0.001, I2 (%) = 29.9; P heterogeneity = 0.240) and studies with a good quality (WMD (95%CI) = -3.52 (-5.62, -1.42) U/L; P-value = 0.001, I2 (%) = 46.9; P heterogeneity = 0.170). CONCLUSIONS In conclusion, RBAC supplementation seems to not have any hepatic adverse effects and its supplementation as powder or for three months and more may decrease serum AST levels. However, we need further studies to confirm the results. REGISTRY NUMBER FOR SYSTEMATIC REVIEWS OR META-ANALYZES CRD42022361002, registration time: 29/09/2022.
Collapse
Affiliation(s)
- Morvarid Noormohammadi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hossein Shahinfar
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ooi SL, Micalos PS, Pak SC. Modified rice bran arabinoxylan as a nutraceutical in health and disease-A scoping review with bibliometric analysis. PLoS One 2023; 18:e0290314. [PMID: 37651416 PMCID: PMC10470915 DOI: 10.1371/journal.pone.0290314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Rice bran arabinoxylan compound (RBAC) is a polysaccharide modified by Lentinus edodes mycelial enzyme widely used as a nutraceutical. To explore translational research on RBAC, a scoping review was conducted to synthesise research evidence from English (MEDLINE, ProQuest, CENTRAL, Emcare, CINAHL+, Web of Science), Japanese (CiNii, J-Stage), Korean (KCI, RISS, ScienceON), and Chinese (CNKI, Wanfang) sources while combining bibliometrics and network analyses for data visualisation. Searches were conducted between September and October 2022. Ninety-eight articles on RBAC and the biological activities related to human health or disease were included. Research progressed with linear growth (median = 3/year) from 1998 to 2022, predominantly on Biobran MGN-3 (86.73%) and contributed by 289 authors from 100 institutions across 18 countries. Clinical studies constitute 61.1% of recent articles (2018 to 2022). Over 50% of the research was from the USA (29/98, 29.59%) and Japan (22/98, 22.45%). A shifting focus from immuno-cellular activities to human translations over the years was shown via keyword visualisation. Beneficial effects of RBAC include immunomodulation, synergistic anticancer properties, hepatoprotection, antiinflammation, and antioxidation. As an oral supplement taken as an adjuvant during chemoradiotherapy, cancer patients reported reduced side effects and improved quality of life in human studies, indicating RBAC's impact on the psycho-neuro-immune axis. RBAC has been studied in 17 conditions, including cancer, liver diseases, HIV, allergy, chronic fatigue, gastroenteritis, cold/flu, diabetes, and in healthy participants. Further translational research on the impact on patient and community health is required for the evidence-informed use of RBAC in health and disease.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Peter S. Micalos
- School of Dentistry and Medical Sciences, Charles Sturt University, Port Macquarie, New South Wales Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| |
Collapse
|
5
|
Ooi SL, Micalos PS, Pak SC. Modified Rice Bran Arabinoxylan by Lentinus edodes Mycelial Enzyme as an Immunoceutical for Health and Aging-A Comprehensive Literature Review. Molecules 2023; 28:6313. [PMID: 37687141 PMCID: PMC10488663 DOI: 10.3390/molecules28176313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Rice bran arabinoxylan compound (RBAC) is derived from defatted rice bran enzymatically treated with Lentinus edodes mycelium. This review explores biologically active compounds and mechanisms of action that support RBAC as an immunomodulating nutraceutical in generally healthy and/or aging individuals. Thirty-seven (n = 37) primary research articles fulfilled the selection criteria for review. Most research is based on Biobran MGN-3, which consists of complex heteropolysaccharides with arabinoxylan as its primary structure while also containing galactan and glucan. RBAC was found to invoke immunological activities through direct absorption via the digestive tract and interaction with immune cells at the Peyer's patches. RBAC was shown to promote innate defence by upregulating macrophage phagocytosis and enhancing natural killer cell activity while lowering oxidative stress. Through induction of dendritic cell maturation, RBAC also augments adaptive immunity by promoting T and B lymphocyte proliferation. RBAC acts as an immunomodulator by inhibiting mast cell degranulation during allergic reactions, attenuating inflammation, and downregulating angiogenesis by modulating cytokines and growth factors. RBAC has been shown to be a safe and effective nutraceutical for improving immune health, notably in aging individuals with reduced immune function. Human clinical trials with geriatric participants have demonstrated RBAC to have prophylactic benefits against viral infection and may improve their quality of life. Further research should explore RBAC's bioavailability, pharmacodynamics, and pharmacokinetics of the complex heteropolysaccharides within. Translational research to assess RBAC as a nutraceutical for the aging population is still required, particularly in human studies with larger sample sizes and cohort studies with long follow-up periods.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia;
| | - Peter S. Micalos
- School of Dentistry and Medical Sciences, Charles Sturt University, Port Macquarie, NSW 2444, Australia;
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia;
| |
Collapse
|
6
|
Biobran/MGN-3, an Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study. Nutrients 2023; 15:nu15020453. [PMID: 36678324 PMCID: PMC9866808 DOI: 10.3390/nu15020453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), poses a serious global public health threat for which there is currently no satisfactory treatment. This study examines the efficacy of Biobran/MGN-3 against SARS-CoV-2. Biobran is an arabinoxylan rice bran that has been shown to significantly inhibit the related influenza virus in geriatric subjects. Here, Biobran's anti-SARS-CoV-2 activity was assessed using MTT and plaque reduction assays, RT-PCR, ELISA techniques, and measurements of SARS-CoV-2-related gene expression and protein levels. For Vero E6 cells infected with SARS-CoV-2, Biobran reduced the viral load by 91.9% at a dose of 100 μg/mL, it reduced viral counts (PFU/mL) by 90.6% at 50 μg/mL, and it exhibited a significant selectivity index (EC50/IC50) of 22.5. In addition, Biobran at 10 μg/mL inhibited papain-like proteinase (PLpro) by 87% and ACE2 SARS-CoV-2 S-protein RBD by 90.5%, and it significantly suppressed SARS-CoV-2 gene expression, down-regulating E-gene and RdRp gene expression by 93% each at a dose of 50 μg/mL and inhibiting the E-protein by 91.3%. An in silico docking study was also performed to examine the protein-protein interaction (PPI) between SARS-CoV-2 RBD and DC-SIGN as well as between serine carboxypeptidase and papain-like protease PLpro. Serine carboxypeptidase, an active ingredient in Biobran, was found to interfere with the binding of SARS-CoV-2 to its receptor DC-SIGN on Vero cells, thus preventing the cell entry of SARS-CoV-2. In addition, it impairs the viral replication cycle by binding to PLpro. We conclude that Biobran possesses potent antiviral activity against SARS-CoV-2 in vitro and suggest that Biobran may be able to prevent SARS-CoV-2 infection. This warrants further investigation in clinical trials.
Collapse
|
7
|
Dectin-1b activation by arabinoxylans induces trained immunity in human monocyte-derived macrophages. Int J Biol Macromol 2022; 209:942-950. [PMID: 35447262 DOI: 10.1016/j.ijbiomac.2022.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
Arabinoxylans of various structures and sources have shown to possess the ability to induce a range of immune responses in different cell types in vitro and in vivo. Although the underlying mechanisms remain to be fully established, several studies point towards the involvement of activation of pattern recognition receptors (PRRs). Activation of specific PRRs (i.e., Dectin-1 and CR3) has also been shown to play a key role in the induction of a non-specific memory response in innate immune cells, termed 'trained innate immunity'. In the current study, we assessed whether arabinoxylans are also able to induce trained innate immunity. To this end, a range of arabinoxylan preparations from different sources were tested for their physicochemical properties and their capacity to induce innate immune training and resilience. In human macrophages, rice and wheat-derived arabinoxylan preparations induced training and/or resilience effects, the extent depending on fiber particle size and solubility. Using a Dectin-1 antagonist or a CR3 antibody, it was demonstrated that arabinoxylan-induced trained immunity in macrophages is mainly dependent on Dectin-1b. These findings build on previous observations showing the immunomodulatory potential of arabinoxylans as biological response modifiers and open up promising avenues for their use as health promoting ingredients.
Collapse
|
8
|
Laue C, Stevens Y, van Erp M, Papazova E, Soeth E, Pannenbeckers A, Stolte E, Böhm R, Gall SL, Falourd X, Ballance S, Knutsen SH, Pinheiro I, Possemiers S, Ryan PM, Ross RP, Stanton C, Wells JM, van der Werf S, Mes JJ, Schrezenmeir J. Adjuvant Effect of Orally Applied Preparations Containing Non-Digestible Polysaccharides on Influenza Vaccination in Healthy Seniors: A Double-Blind, Randomised, Controlled Pilot Trial. Nutrients 2021; 13:2683. [PMID: 34444843 PMCID: PMC8400163 DOI: 10.3390/nu13082683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023] Open
Abstract
Senior individuals can suffer from immunosenescence and novel strategies to bolster the immune response could contribute to healthy ageing. In this double-blind, randomised, controlled pilot trial, we investigated the ability of non-digestible polysaccharide (NPS) preparations to enhance the immune response in a human vaccination model. In total, 239 subjects (aged 50-79 years) were randomised to consume one of five different NPS (yeast β-glucan (YBG), shiitake β-glucan (SBG), oat β-glucan (OBG), arabinoxylan (AX), bacterial exopolysaccharide (EPS)) or control (CTRL) product daily for five weeks. After two weeks of intervention, subjects were vaccinated with seasonal influenza vaccine. The post-vaccination increases in haemagglutination inhibition antibody titres and seroprotection rate against the influenza strains were non-significantly enhanced in the NPS intervention groups compared to CTRL. Specifically, a trend towards a higher mean log2 fold increase was observed in the AX group (uncorrected p = 0.074) combined with a trend for an increased seroprotection rate, AX group (48.7%) compared to CTRL (25.6%) (uncorrected p = 0.057), for the influenza A H1N1 strain. Subjects consuming AX also had a reduced incidence of common colds compared to CTRL (1 vs. 8; p = 0.029 in Fisher exact test). No adverse effects of NPS consumption were reported. The findings of this pilot study warrant further research to study AX as an oral adjuvant to support vaccine efficacy.
Collapse
Affiliation(s)
- Christiane Laue
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Yala Stevens
- BioActor, Brightlands Health Campus, 6229 GS Maastricht, The Netherlands; (Y.S.); (M.v.E.)
| | - Monique van Erp
- BioActor, Brightlands Health Campus, 6229 GS Maastricht, The Netherlands; (Y.S.); (M.v.E.)
| | - Ekaterina Papazova
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Edlyn Soeth
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Angelika Pannenbeckers
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Ellen Stolte
- Host-Microbe Interactomics, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (E.S.); (J.M.W.)
| | - Ruwen Böhm
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Sophie Le Gall
- UR1268 BIA, INRA, 44316 Nantes, France; (S.L.G.); (X.F.)
| | - Xavier Falourd
- UR1268 BIA, INRA, 44316 Nantes, France; (S.L.G.); (X.F.)
| | - Simon Ballance
- Nofima, Norwegian Institute of Food Fisheries & Aquaculture Research , 1433 Ås, Norway; (S.B.); (S.H.K.)
| | - Svein H. Knutsen
- Nofima, Norwegian Institute of Food Fisheries & Aquaculture Research , 1433 Ås, Norway; (S.B.); (S.H.K.)
| | - Iris Pinheiro
- Prodigest, Technologiepark-Zwijnaarde, 9052 Ghent, Belgium; (I.P.); (S.P.)
| | - Sam Possemiers
- Prodigest, Technologiepark-Zwijnaarde, 9052 Ghent, Belgium; (I.P.); (S.P.)
| | - Paul M. Ryan
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (P.M.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (P.M.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Jerry M. Wells
- Host-Microbe Interactomics, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (E.S.); (J.M.W.)
| | | | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
| | - Juergen Schrezenmeir
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| |
Collapse
|
9
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
10
|
The Health-Promoting Properties and Clinical Applications of Rice Bran Arabinoxylan Modified with Shiitake Mushroom Enzyme-A Narrative Review. Molecules 2021; 26:molecules26092539. [PMID: 33925340 PMCID: PMC8123671 DOI: 10.3390/molecules26092539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 01/11/2023] Open
Abstract
Rice bran arabinoxylan compound (RBAC) is derived from defatted rice bran hydrolyzed with Lentinus edodes mycelial enzyme. It has been marketed as a functional food and a nutraceutical with health-promoting properties. Some research has demonstrated this rice bran derivative to be a potent immunomodulator, which also possesses anti-inflammatory, antioxidant, and anti-angiogenic properties. To date, research on RBAC has predominantly focused on its immunomodulatory action and application as a complementary therapy for cancer. Nonetheless, the clinical applications of RBAC can extend beyond cancer therapy. This article is a narrative review of the research on the potential benefits of RBAC for cancer and other health conditions based on the available literature. RBAC research has shown it to be useful as a complementary treatment for cancer and human immunodeficiency virus infection. It can positively modulate serum glucose, lipid and protein metabolism in diabetic patients. Additionally, RBAC has been shown to ameliorate irritable bowel syndrome and protect against liver injury caused by hepatitis or nonalcoholic fatty liver disease. It can potentially ease symptoms in chronic fatigue syndrome and prevent the common cold. RBAC is safe to consume and has no known side effects at the typical dosage of 2–3 g/day. Nevertheless, further research in both basic studies and human clinical trials are required to investigate the clinical applications, mechanisms, and effects of RBAC.
Collapse
|
11
|
Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun 2021; 12:459. [PMID: 33469030 PMCID: PMC7815789 DOI: 10.1038/s41467-020-20737-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/09/2020] [Indexed: 01/07/2023] Open
Abstract
Some Bacteroidetes and other human colonic bacteria can degrade arabinoxylans, common polysaccharides found in dietary fiber. Previous work has identified gene clusters (polysaccharide-utilization loci, PULs) for degradation of simple arabinoxylans. However, the degradation of complex arabinoxylans (containing side chains such as ferulic acid, a phenolic compound) is poorly understood. Here, we identify a PUL that encodes multiple esterases for degradation of complex arabinoxylans in Bacteroides species. The PUL is specifically upregulated in the presence of complex arabinoxylans. We characterize some of the esterases biochemically and structurally, and show that they release ferulic acid from complex arabinoxylans. Growth of four different colonic Bacteroidetes members, including Bacteroides intestinalis, on complex arabinoxylans results in accumulation of ferulic acid, a compound known to have antioxidative and immunomodulatory properties.
Collapse
|
12
|
Spaggiari M, Dall’Asta C, Galaverna G, del Castillo Bilbao MD. Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives. Foods 2021; 10:E85. [PMID: 33406743 PMCID: PMC7824317 DOI: 10.3390/foods10010085] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study is to review the innovative techniques based on bioprocessing, thermal or physical treatments which have been proposed during the last few decades to convert rice bran into a valuable food ingredient. Rice bran (Oryza sativa) is the main by-product of rice grain processing. It is produced in large quantities worldwide and it contains a high amount of valuable nutrients and bioactive compounds with significant health-related properties. Despite that, its application in food industry is still scarce because of its sensitivity to oxidation processes, instability and poor technological suitability. Furthermore, the health-related effects of pretreated rice bran are also presented in this review, considering the up-to-date literature focused on both in vivo and in vitro studies. Moreover, in relation to this aspect, a brief description of rice bran arabinoxylans is provided. Finally, the application of rice bran in the food industry and the main technology aspects are concisely summarized.
Collapse
Affiliation(s)
- Marco Spaggiari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy; (M.S.); (C.D.); (G.G.)
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy; (M.S.); (C.D.); (G.G.)
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy; (M.S.); (C.D.); (G.G.)
| | - María Dolores del Castillo Bilbao
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
13
|
Srinivasan A, Aruldhas J, Perumal SS, Ekambaram SP. Phenolic acid bound arabinoxylans extracted from Little and Kodo millets modulate immune system mediators and pathways in RAW 264.7 cells. J Food Biochem 2020; 45:e13563. [PMID: 33190311 DOI: 10.1111/jfbc.13563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022]
Abstract
The immunomodulating effect of Phenolic acid bound arabinoxylans (PCA-AXs) extracted from Little (PCA-AX-L) and Kodo (PCA-AX-K) millet seeds in RAW 264.7 cells were investigated. The PCA-AXs were extracted from millets and their chemical characterization were carried out by GC-MS, HPLC, and FT-IR. The immunomodulatory effect of PCA-AXs in RAW 264.7 cells were investigated by estimating ROS, NO, and cytokines TNF-α, IL-1β, IL-6, and evaluation of molecular mechanism by q-PCR & western blotting techniques. The xylose: arabinose ratio of PCA-AX-L and PCA-AX-K were 1.48:1.0 and 2.26:1.0, respectively. The phenolic acids content was higher in PCA-AX-K than PCA-AX-L determined by HPLC. FT-IR analysis confirms the presence of α-glucosidic linkage with the degree of substitution of xylan backbone by arabinose residues. The evaluation of immunomodulating effect of PCA-AXs revealed that the PCA-AX-L-treated cells showed higher release of NO, ROS and cytokines than PCA-AX-K-treated cells. The mRNA expressions of TNF-α, iNOS and COX-2 were upregulated by PCA-AX-L and downregulated by PCA-AX-K in dose-dependent manner. Furthermore, in western blotting, the ERK and NF-κB were found to be activated by PCA-AX-L and inhibited by PCA-AX-K. Our findings suggest that the high branched arabinoxylans of PCA-AX-L could modulate the immune response in RAW 264.7 cells through activation of ERK and NF-κB signaling pathways and acts as an immunostimulant. The higher phenolic content in PCA-AX-K could modulate the immune response by downregulation of ERK and NF-κB signaling pathways and thus, it could act as an immunomodulator. PRACTICAL APPLICATIONS: Millets are the richest source of arabinoxylans in which they are known to be bound with phenolic acids (PCA-AX). Arabinoxylans derived from rice and wheat is known immunomodulators. This study was focused to evaluate the immunomodulatory property of PCA-AX derived from two different millets little and kodo. The study results clearly indicated the immune stimulatory action of PCA-AX-L and immunomodulatory action of PCA-AX-K. The explored mechanism indicated that the PCA-AXs modulate NF-κB & ERK pathways for their immunomodulatory action.
Collapse
Affiliation(s)
- Aswini Srinivasan
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| | - Jenifer Aruldhas
- Department of Bio-Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| | - Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| |
Collapse
|
14
|
Ji MG, Lee YR, Nam YH, Castañeda R, Hong BN, Kang TH. Immunostimulatory Action of High-Content Active Arabinoxylan in Rice Bran. ACS OMEGA 2020; 5:26374-26381. [PMID: 33110965 PMCID: PMC7581081 DOI: 10.1021/acsomega.0c02472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Immunostimulatory activity comprises specific and nonspecific immune responses stimulated by internal and external factors. Arabinoxylan is well known for its immunostimulatory activity in vivo and in vitro, although the biological activities of arabinoxylan oligosaccharides depend on their structural features. In this study, we aimed to evaluate in vitro and in vivo the immunostimulatory activity of high-content active arabinoxylan (HCAA) obtained from rice bran through bioconversion by microorganisms and acid hydrolysis. Three microorganisms, Penicillium rocheforti, Aspergillus oryzae, and Pleurotus osteatus, and three different acid concentrations of hydrochloric acid (5, 10, and 20%) and acetic acid (25, 50, and 75%) were used for producing HCAA. HPLC analysis of arabinose and xylose content revealed that fermentation with P. rocheforti followed by hydrolysis with 5% hydrochloric acid was the most efficient to produce HCAA. GPC analysis of HCAA indicates that HCAA is a complex of various forms of saccharides and shows an average molecular weight of 625. Further, in vitro evaluation disclosed that exposure to HCAA (10-200 μg/mL) increased cell viability in mice splenic cells and RAW 264.7 cells. Additionally, exposure of mice to oral administration of HCAA (100 mg/kg) for 4-7 days increased lymphokine-activated killer (LAK)- and macrophage-mediated cytotoxic activity in cancer cells (YAC-1). Furthermore, in vitro exposure to HCAA and oral administrations in mice revealed increased interferon-γ (IFN-γ) and interleukin-10 (IL-10) protein expression through western blot analysis in RAW 264.7 cells and isolated splenic cells. Our results suggest that HCAA developed by bioconversion and acid hydrolysis may enhance immune responses in vivo and in vitro.
Collapse
|
15
|
Badr El-Din NK, Ali DA, Othman R, French SW, Ghoneum M. Chemopreventive role of arabinoxylan rice bran, MGN-3/Biobran, on liver carcinogenesis in rats. Biomed Pharmacother 2020; 126:110064. [PMID: 32278271 DOI: 10.1016/j.biopha.2020.110064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and one of the most lethal. MGN-3/Biobran is a natural product derived from rice bran hemicelluloses and has been reported to possess a potent anticancer effect in a clinical study of patients with HCC. The current study examines the mechanisms by which Biobran protects against chemically induced hepatocarcinogenesis in rats. The chemical carcinogen used in this study is N-nitrosodiethylamine (NDEA) plus carbon tetrachloride (CCl4). Rats were treated with this carcinogen, and the animals were pretreated or posttreated with Biobran via intraperitoneal injections until the end of the experiment. Treatment with Biobran resulted in: 1) significant alleviation of liver preneoplastic lesions towards normal hepatocellular architecture in association with inhibition of collagen fiber deposition; 2) arrest of cancer cells in the sub-G1 phase of the cell cycle; 3) increased DNA fragmentation in cancer cells; 4) down-regulated expression of Bcl-2 and up-regulated expression of p53, Bax, and caspase-3; and 5) protection against carcinogen-induced suppression of IkappaB-alpha (IκB-α) mRNA expression and inhibition of nuclear factor kappa-B (NF-κB/p65) expression. Additionally, the effect of Biobran treatment was found to be more significant when supplemented prior to carcinogen-induced hepatocarcinogenesis as compared to posttreatment. We conclude that Biobran inhibits hepatocarcinogenesis in rats by mechanisms that include induction of apoptosis, inhibition of inflammation, and suppression of cancer cell proliferation. Biobran may be a promising chemopreventive and chemotherapeutic agent for liver carcinogenesis.
Collapse
Affiliation(s)
| | - Doaa A Ali
- Department of Zoology, Faculty of Science, University of Mansoura, Mansoura, Egypt
| | - Reem Othman
- Department of Zoology, Faculty of Science, University of Mansoura, Mansoura, Egypt
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Mamdooh Ghoneum
- Department of Surgery, Charles Drew University of Medicine and Science, Los Angeles, CA, 90059, USA
| |
Collapse
|
16
|
Singha AK, Sarkar C, Majumder D, Debnath R, Saha M, Maiti D. IL-15 and GM-CSF stimulated macrophages enhances phagocytic activity in ENU induced leukemic mice. Immunobiology 2019; 225:151894. [PMID: 31839395 DOI: 10.1016/j.imbio.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
Abstract
Murine splenic macrophage plays a decisive role in host immunity through phagocytosis against pathogens. It was reported that, macrophages also involves in phagocytosis of some tumour cells upon its activation initiated by certain cytokines produced by other immune cell or by indigenously treated. In this study, we have investigated the killing of leukemic blast cells by macrophages upon stimulated with IL-15 and GM-CSF alone or in combination in ENU challenged leukemic murine model. Along with, the release of TNF-α, IL-12 and IFN-γ by macrophages were assayed by ELISA. NO production by macrophages was also investigated. The molecular expressions like GM-CSF and TLRs were investigated for better understand of macrophage-leukemic cell interaction. Result shows that in disease condition macrophages have poor phagocytic activities which may be due to less release of TNF-α, IL-12 and IFN-γ by macrophages. This impaired phagocytic activity in leukemic mice was increase upon stimulation with IL-15 and GM-CSF.
Collapse
Affiliation(s)
- Ashish Kumar Singha
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Chaitali Sarkar
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Debabrata Majumder
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Rahul Debnath
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Manasi Saha
- Dept. of Pathology, Agartala Govt. Medical College, Agartala-799001, Tripura, India.
| | - Debasish Maiti
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| |
Collapse
|
17
|
Kumar A, Allison A, Henry M, Scales A, Fouladkhah AC. Development of Salmonellosis as Affected by Bioactive Food Compounds. Microorganisms 2019; 7:microorganisms7090364. [PMID: 31540475 PMCID: PMC6780870 DOI: 10.3390/microorganisms7090364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Infections caused by Salmonella serovars are the leading cause of foodborne hospitalizations and deaths in Americans, extensively prevalent worldwide, and pose a considerable financial burden on public health infrastructure and private manufacturing. While a comprehensive review is lacking for delineating the role of dietary components on prevention of Salmonellosis, evidence for the role of diet for preventing the infection and management of Salmonellosis symptoms is increasing. The current study is an evaluation of preclinical and clinical studies and their underlying mechanisms to elaborate the efficacy of bioactive dietary components for augmenting the prevention of Salmonella infection. Studies investigating dietary components such as fibers, fatty acids, amino acids, vitamins, minerals, phenolic compounds, and probiotics exhibited efficacy of dietary compounds against Salmonellosis through manipulation of host bile acids, mucin, epithelial barrier, innate and adaptive immunity and gut microbiota as well as impacting the cellular signaling cascades of the pathogen. Pre-clinical studies investigating synergism and/or antagonistic activities of various bioactive compounds, additional randomized clinical trials, if not curtailed by lack of equipoise and ethical concerns, and well-planned epidemiological studies could augment the development of a validated and evidence-based guideline for mitigating the public health burden of human Salmonellosis through dietary compounds.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Abimbola Allison
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Monica Henry
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Anita Scales
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
18
|
Lewis JE, Atlas Bsn SE, Abbas MH, Rasul A, Farooqi A, Lantigua LA, Michaud F, Goldberg S, Lages LC, Higuera OL, Fiallo A, Tiozzo E, Woolger JM, Ciraula S, Mendez A, Rodriguez A, Konefal J. The Novel Effects of a Hydrolyzed Polysaccharide Dietary Supplement on Immune, Hepatic, and Renal Function in Adults with HIV in a Randomized, Double-Blind, Placebo-Control Trial. J Diet Suppl 2019; 17:429-441. [PMID: 31146613 DOI: 10.1080/19390211.2019.1619010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The primary objective of the study was to evaluate the effects of a hydrolyzed polysaccharide, rice bran arabinoxylan compound (RBAC), on immune, hepatic, and renal function in HIV + individuals. A 6-month randomized double-blind placebo-controlled trial was utilized to conduct the intervention. Forty-seven HIV + individuals on stable antiretroviral therapy were enrolled and randomly assigned to one of the 2 study conditions (n = 22 RBAC and n = 25 placebo) and consumed 3 gram/day of either compound for 6 months. Participants were assessed at baseline and 3 and 6 months follow-up for CD4+ and CD8+, liver enzymes, and kidney function. No side effects were reported, and liver and kidney markers remained nearly completely within normal limits. The percentage change in CD4+ was similar for the placebo (+2.2%) and RBAC (+3.1%) groups at 6 months follow-up. The percentage change in CD8+ count significantly decreased from baseline to 6 months in the RBAC group (-5.2%), whereas it increased in the placebo group (+57.8%; p = 0.04). The CD4+/CD8+ ratio improved clinically in the RBAC group from 0.95 (SD = 0.62) at baseline to 1.07 (SD = 0.11) at 6 months, whereas it declined in the placebo group from 0.96 (SD = 0.80) at baseline to 0.72 (SD = 0.59) at 6 months. Our results showed a statistically significant decrease in CD8+ count and a clinically significant increase in CD4+/CD8+ ratio for the RBAC group compared to the placebo group. Thus, the results of this study suggest that the immunomodulatory and antisenescent activities of RBAC are promising for the HIV population.
Collapse
Affiliation(s)
- John E Lewis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven E Atlas Bsn
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Muhammad H Abbas
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ammar Rasul
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashar Farooqi
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura A Lantigua
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Frederick Michaud
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Lucas C Lages
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oscar L Higuera
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Fiallo
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eduard Tiozzo
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judi M Woolger
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie Ciraula
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Armando Mendez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Allan Rodriguez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Janet Konefal
- Department of Family Medicine and Community Health, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
19
|
Purification, structural characterization of an arabinogalactan from green gram (Vigna radiata) and its role in macrophage activation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
20
|
Lee HT, Lee SJ, Yoon JW. Immunomodulation by Bioprocessed Polysaccharides from <i>Lentinus edodes</i> Mycelia Cultures with Rice Bran in the <i>Salmonella</i> Gallinarum-infected Chicken Macrophages. ACTA ACUST UNITED AC 2018. [DOI: 10.13103/jfhs.2018.33.5.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Lewis JE, Atlas SE, Abbas MH, Rasul A, Farooqi A, Lantigua LA, Michaud F, Goldberg S, Lages LC, Higuera OL, Fiallo A, Tiozzo E, Woolger JM, Ciraula S, Mendez A, Rodriguez A, Konefal J. RETRACTED ARTICLE: The Novel Effects of a Hydrolyzed Polysaccharide Dietary Supplement on Immune, Hepatic, and Renal Function in Adults with HIV in a Randomized, Double-Blind Placebo-Control Trial. J Diet Suppl 2018; 18:I-XIII. [PMID: 30346850 DOI: 10.1080/19390211.2018.1494661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The primary objective of the study was to evaluate the effects of a hydrolyzed polysaccharide, rice bran arabinoxylan compound (RBAC), on immune, hepatic, and renal function in HIV + individuals. A six-month randomized double-blind placebo-controlled trial was utilized to conduct the intervention. Forty-seven HIV + participants on stable antiretroviral therapy were enrolled and randomly assigned to one of the two study conditions (n = 22 RBAC and n = 25 placebo) and consumed 3 gram/day of either compound for six months. Participants were assessed at baseline and 3 and 6 months follow-up for CD4+ and CD8+, liver enzymes, and kidney function. No side effects were reported, and liver and kidney markers nearly remained completely within normal limits. The percentage change in CD4+ was similar for the placebo (+2.2%) and RBAC (+3.1%) groups at 6 months follow-up. The percentage change in CD8+ count significantly decreased from baseline to 6 months in the RBAC group (-5.2%), whereas it increased in the placebo group (+57.8%; p = 0.04). The CD4+/CD8+ ratio improved clinically in the RBAC group from 0.95 (SD =0.62) at baseline to 1.07 (SD =0.11) at 6 months, whereas it declined in the placebo group from 0.96 (SD =0.80) at baseline to 0.72 (SD =0.59) at 6 months. Our results showed a statistically significant decrease in CD8+ count and a clinically significant increase in CD4+/CD8+ ratio for the RBAC group compared to the placebo group. Thus, the results of this study suggest that the immunomodulatory and antisenescent activities of RBAC are promising for the HIV population.
Collapse
Affiliation(s)
- John E Lewis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven E Atlas
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Muhammad H Abbas
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ammar Rasul
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashar Farooqi
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura A Lantigua
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Frederick Michaud
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Lucas C Lages
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oscar L Higuera
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Fiallo
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eduard Tiozzo
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judi M Woolger
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie Ciraula
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Armando Mendez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Allan Rodriguez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Janet Konefal
- Department of Family Medicine and Community Health, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Immunomodulatory activity of non starch polysaccharides isolated from green gram (Vigna radiata). Food Res Int 2018; 113:269-276. [PMID: 30195521 DOI: 10.1016/j.foodres.2018.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/18/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Green gram, rich in dietary fiber is known to enhance the function of immune system. However information pertaining to the immunomodulatory potential of its non starch polysaccharides (NSPs) is scanty. Hence, five different NSPs were extracted successively using water (WSP), hot water (55 o C, HWSP), EDTA (0.5%, Pectins) and alkali (10%, Hemicellulose A and B) which varied in their arabinose to galactose ratio, sugar, protein, uronic acid contents, molecular weight distribution and immunomodulatory activity. Hemicellulose B was relatively rich in carbohydrate content (~95%) and also possessed potent immunomodulatory activity among the various NSPs. Hemicellulose B was further fractionated on DEAE-cellulose column into six different fractions by eluting step-wise with water, ammonium carbonate (0.1, 0.2, 0.3 M AC) and sodium hydroxide (0.1 and 0.2 M NaOH). 0.1 M AC eluted fraction was found to be the major one amounting to ~ 50% yield and showed relatively significant (p < 0.001) activity towards splenocyte proliferation and macrophage activation as compared with rest of the DEAE eluted fractions.
Collapse
|
23
|
The Effect of a Hydrolyzed Polysaccharide Dietary Supplement on Biomarkers in Adults with Nonalcoholic Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1751583. [PMID: 29853945 PMCID: PMC5960521 DOI: 10.1155/2018/1751583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
The primary objective of the study was to evaluate the effect of a hydrolyzed polysaccharide, Rice Bran Arabinoxylan Compound (RBAC), on biomarkers in adults with nonalcoholic fatty liver disease (NAFLD). A 90-day randomized double-blind placebo-controlled trial examined the effect of RBAC on complete blood count, liver enzymes, lipids, oxidative stress markers, cytokines, and growth factors. Twenty-three adults with NAFLD were enrolled and randomly assigned to one of the two study conditions (n = 12 RBAC and n = 11 placebo) and consumed 1 gram/day of either compound for 90 days. Subjects were assessed at baseline and 45 and 90 days. No adverse effects were reported. Alkaline phosphatase significantly decreased (−3.1%; SD = 19.9; F[1,19] = 5.1, p = 0.03) in the RBAC group compared to placebo. Percent monocytes (17.9%; SD = 18.3; F[1,19] = 5.9, p = 0.02) and percent eosinophils (30.6%; SD = 30.5; F[1,19] = 12.3, p < 0.01) increased in the RBAC group. IFN-γ (156%; SD = 131.8; F[1,19] = 4.2, p = 0.06) and IL-18 (29.1%; SD = 64; F[1,19] = 5.3, p = 0.03) increased in the RBAC group compared to placebo. Other improvements were noted for platelets, neutrophils, neutrophil-lymphocyte ratio, γ-glutamyl transferase, and 4-hydroxynonenal. RBAC had beneficial effects on several biomarkers that add to the known immunomodulatory activities of RBAC, which may be promising for people with NAFLD.
Collapse
|
24
|
Marino F, Guasti L, Cosentino M, Piazza DDE, Simoni C, Bianchi V, Piantanida E, Saporiti F, Cimpanelli M, Crespi C, Vanoli P, Palma DDE, Klersy C, Frigo G, Bartalena L, Venco A, Lecchini S. Thyroid Hormone and Thyrotropin Regulate Intracellular Free Calcium Concentrations in Human Polymorphonuclear Leukocytes: In Vivo and in vitro Studies. Int J Immunopathol Pharmacol 2018. [DOI: 10.1177/205873920601900115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intracellular free calcium concentrations ([Ca++]1) were studied in polymorphonuclear leukocytes (PMNs) from 13 athyreotic patients who had been previously treated by total thyroidectomy and radioiodine therapy for differentiated thyroid carcinoma, and from age- and sex-matched euthyroid healthy controls. Patients were studied twice, when hypothyroid (visit 1) and after restoration of euthyroidism by L-T4 TSH-suppressive therapy (visit 2). PMNs from patients at visit 1 had significantly lower resting [Ca++]1 levels compared to both visit 2 and controls. Values at visit 2 did not differ from those of the controls. Stimulus-induced [Ca++]1 rise was also significantly blunted at visit 1 and normalized at visit 2, possibly through a differential contribution of distinct intracellular Ca++ stores, as suggested by the response pattern to the chemotactic agent, N-formyl-Met-Leu-Phe (fMLP), to the selective SERCA pump inhibitor, thapsigargine, and to the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP). In vitro treatment of PMNs from healthy subjects with high TSH concentrations impaired intracellular Ca++ store function. Both resting [Ca++]1 levels and fMLP-induced [Ca++]1 rise increased in the presence either of low-concentration TSH or of T4, but effects of TSH and T4 were not additive. T3, rT3, and TRIAC had no effect. In conclusion, this study provides evidence for a direct relationship between thyroid status and [Ca[Ca++]1 homeostasis in human PMNs, mainly related to direct actions of TSH and T4 on these cells.
Collapse
Affiliation(s)
- F. Marino
- Department of Clinical Medicine, University of Insubria, Varese
| | - L. Guasti
- Department of Clinical Medicine, University of Insubria, Varese
| | - M. Cosentino
- Department of Clinical Medicine, University of Insubria, Varese
| | - D. DE Piazza
- Department of Clinical Medicine, University of Insubria, Varese
| | - C. Simoni
- Department of Clinical Medicine, University of Insubria, Varese
| | - V. Bianchi
- Department of Clinical Medicine, University of Insubria, Varese
| | - E. Piantanida
- Department of Clinical Medicine, University of Insubria, Varese
| | - F. Saporiti
- Department of Clinical Medicine, University of Insubria, Varese
| | - M.G. Cimpanelli
- Department of Clinical Medicine, University of Insubria, Varese
| | - C. Crespi
- Department of Clinical Medicine, University of Insubria, Varese
| | - P. Vanoli
- Section of Nuclear Medicine and Radiotherapy, Ospedale “Di Circolo” e Fondazione Macchi, Varese
| | - D. DE Palma
- Section of Nuclear Medicine and Radiotherapy, Ospedale “Di Circolo” e Fondazione Macchi, Varese
| | - C. Klersy
- Biometry and Clinical Epidemiology, IRCCS Policlinico S. Matteo, Pavia
| | - G.M. Frigo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - L. Bartalena
- Department of Clinical Medicine, University of Insubria, Varese
| | - A. Venco
- Department of Clinical Medicine, University of Insubria, Varese
| | - S. Lecchini
- Department of Clinical Medicine, University of Insubria, Varese
| |
Collapse
|
25
|
Fadel A, Plunkett A, Ashworth J, Mahmoud AM, Ranneh Y, El Mohtadi M, Li W. The effect of extrusion screw-speed on the water extractability and molecular weight distribution of arabinoxylans from defatted rice bran. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:1201-1206. [PMID: 29487463 PMCID: PMC5821654 DOI: 10.1007/s13197-017-3010-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/10/2017] [Accepted: 12/18/2017] [Indexed: 11/24/2022]
Abstract
Arabinoxylans (AXs) are major dietary fibre in cereals. Recently, AXs have attracted a great deal of attention because of their biological activities. These activities have been suggested to be related to the content of low molecular weight (Mw) AXs, in particular those with Mw below 32 kDa. Rice bran is a rich source of AXs. However, water extraction of AXs is difficult and often gives low yield. Extrusion processing has been used to increase the solubility of cereal dietary fibre. The aim of this research was to study the effect of extrusion screw-speeds (80 and 160) rpm on the extraction yield and Mw of water extractable AXs from rice bran. It was found that the extraction of AXs increased significantly with an increase in screw speed and was accompanied by a significant decrease in the Mw of AXs from extruded rice bran. The percentage of very low molecular weight AXs (0.79-1.58 kDa) significantly increased with increasing screw speed.
Collapse
Affiliation(s)
- Abdulmannan Fadel
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Righton Building, Cavendish Street, Manchester, M15 6BH UK
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD UK
| | - Andrew Plunkett
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Righton Building, Cavendish Street, Manchester, M15 6BH UK
| | - Jason Ashworth
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD UK
| | - Ayman M. Mahmoud
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514 Egypt
| | - Yazan Ranneh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohamed El Mohtadi
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD UK
| | - Weili Li
- Institute of Food Science and Innovation, University of Chester, Chester, CH1 4BJ UK
| |
Collapse
|
26
|
Abstract
Purpose
The purpose of this study is to discuss recent research on arabinoxylans from rice bran and wheat byproducts and their immunomodulatory potentials. Also, a potential receptor for arabinoxylans is proposed in relation to arabinoxylans structure.
Design/methodology/approach
This review summarises recent publications on arabinoxylans from rice bran and wheat, classification of arabinoxylans, a brief background on their method of extraction and their immunomodulatory potentials as they induce pro-inflammatory response in vitro, in vivo and in humans. The mechanism of action in which arabinoxylans modulate the immune activity is yet to be discovered, However, the authors have proposed a potential receptor for arabinoxylans in relation to arabinoxylans structure and molecular weight.
Findings
The effects of arabinoxylans from rice bran and wheat on the immune response was found to cause a pro-inflammatory response in vitro, in vivo and in humans. Also, the immune response depends on arabinoxylans structure, the degree of branching and origin.
Originality/value
This review paper focuses on the effects of arabinoxylans from rice bran and wheat on immunomodulatory potentials in vitro, in vivo and in humans. A new mechanism of action has been proposed based on the literature and via linking between arabinoxylans and lipopolysaccharide structure, molecular weight and suggested proposed receptor, which might be activated via both of them.
Collapse
|
27
|
Zhang Z, Smith C, Ashworth J, Li W. Regulation of inducible nitric oxide synthase by arabinoxylans with molecular characterisation from wheat flour in cultured human monocytes. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhengxiao Zhang
- Department of Medical Microbiology and Department of Animal Science; University of Manitoba; Winnipeg MB R3T 2N2 Canada
| | - Christopher Smith
- Institute of Food Science and Innovation; University of Chester; Chester CH1 4BJ UK
| | - Jason Ashworth
- School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| | - Weili Li
- Institute of Food Science and Innovation; University of Chester; Chester CH1 4BJ UK
| |
Collapse
|
28
|
Fadel A, Mahmoud AM, Ashworth JJ, Li W, Ng YL, Plunkett A. Health-related effects and improving extractability of cereal arabinoxylans. Int J Biol Macromol 2017; 109:819-831. [PMID: 29133103 DOI: 10.1016/j.ijbiomac.2017.11.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 02/08/2023]
Abstract
Arabinoxylans (AXs) are major dietary fibers. They are composed of backbone chains of β-(1-4)-linked xylose residues to which α-l-arabinose are linked in the second and/or third carbon positions. Recently, AXs have attracted a great deal of attention because of their biological activities such as their immunomodulatory potential. Extraction of AXs has some difficulties; therefore, various methods have been used to increase the extractability of AXs with varying degrees of success, such as alkaline, enzymatic, mechanical extraction. However, some of these treatments have been reported to be either expensive, such as enzymatic treatments, or produce hazardous wastes and are non-environmentally friendly, such as alkaline treatments. On the other hand, mechanical assisted extraction, especially extrusion cooking, is an innovative pre-treatment that has been used to increase the solubility of AXs. The aim of the current review article is to point out the health-related effects and to discuss the current research on the extraction methods of AXs.
Collapse
Affiliation(s)
- Abdulmannan Fadel
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt; Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Germany; Department of Endocrinology, Diabetes and Nutrition at the Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Germany.
| | - Jason J Ashworth
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Weili Li
- Institute of Food Science & Innovation, University of Chester, Chester, United Kingdom
| | - Yu Lam Ng
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Plunkett
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
29
|
Singha AK, Bhattacharjee B, Saha B, Maiti D. IL-3 and GM-CSF modulate functions of splenic macrophages in ENU induced leukemia. Cytokine 2017; 91:89-95. [DOI: 10.1016/j.cyto.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022]
|
30
|
Scientific Evidence of Rice By-Products for Cancer Prevention: Chemopreventive Properties of Waste Products from Rice Milling on Carcinogenesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9017902. [PMID: 28210630 PMCID: PMC5292171 DOI: 10.1155/2017/9017902] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022]
Abstract
Cancer is a significant global health concern affecting men and women worldwide. Although current chemopreventive drugs could inhibit the growth of cancer cells, they exert many adverse side effects. Dietary factor plays a crucial role in the management of cancers and has drawn the attention of researchers to be used as an option to combat this disease. Both in vitro and in vivo studies showed that rice and its by-products display encouraging results in the prevention of this disease. The mechanism of anticancer effect is suggested partly through potentiation of bioactive compounds like vitamin E, phytic acid, γ-aminobutyric acid (GABA), γ-oryzanol, and phenolics. Nevertheless, the bioactivity of rice and its by-products is still incompletely understood. In this review, we present the findings from a preclinical study both in in vitro and in animal experiments on the promising role of rice by-products with focus on cancer prevention.
Collapse
|
31
|
Versluys M, Tarkowski ŁP, Van den Ende W. Fructans As DAMPs or MAMPs: Evolutionary Prospects, Cross-Tolerance, and Multistress Resistance Potential. FRONTIERS IN PLANT SCIENCE 2017; 7:2061. [PMID: 28123393 PMCID: PMC5225100 DOI: 10.3389/fpls.2016.02061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/26/2016] [Indexed: 05/19/2023]
Abstract
This perspective paper proposes that endogenous apoplastic fructans in fructan accumulating plants, released after stress-mediated cellular leakage, or increased by exogenous application, can act as damage-associated molecular patterns (DAMPs), priming plant innate immunity through ancient receptors and defense pathways that most probably evolved to react on microbial fructans acting as microbe-associated molecular patterns (MAMPs). The proposed model is placed in an evolutionary perspective. How this type of DAMP signaling may contribute to cross-tolerance and multistress resistance effects in plants is discussed. Besides apoplastic ATP, NAD and fructans, apoplastic polyamines, secondary metabolites, and melatonin may be considered potential players in DAMP-mediated stress signaling. It is proposed that mixtures of DAMP priming formulations hold great promise as natural and sustainable alternatives for toxic agrochemicals.
Collapse
|
32
|
Zhu X, Okubo A, Igari N, Ninomiya K, Egashira Y. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 36:45-53. [PMID: 28439487 PMCID: PMC5395424 DOI: 10.12938/bmfh.16-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022]
Abstract
Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling.
Collapse
Affiliation(s)
- Xia Zhu
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Aya Okubo
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Naoki Igari
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., 1650-88 Okubara-cho, Ushiku-shi, Ibaraki 300-1283, Japan
| | - Kentaro Ninomiya
- Marketing Planning & Support, Daiwa Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yukari Egashira
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
33
|
Badr El-Din NK, Abdel Fattah SM, Pan D, Tolentino L, Ghoneum M. Chemopreventive Activity of MGN-3/Biobran Against Chemical Induction of Glandular Stomach Carcinogenesis in Rats and Its Apoptotic Effect in Gastric Cancer Cells. Integr Cancer Ther 2016; 15:NP26-NP34. [PMID: 27151588 PMCID: PMC5739167 DOI: 10.1177/1534735416642287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 01/26/2023] Open
Abstract
In the current study, we investigated the chemopreventive activity of arabinoxylan rice bran, MGN-3/Biobran, against chemical induction of glandular stomach carcinogenesis in rats. Gastric cancer was induced by carcinogen methylnitronitrosoguanidine (MNNG), and rats received MNNG alone or MNNG plus Biobran (40 mg/kg body weight) for a total of 8 months. Averaged results from 2 separate readings showed that exposure to MNNG plus Biobran caused gastric dysplasia and cancer (adenocarcinoma) in 4.5/12 rats (9/24 readings, 37.5%), with 3.5/12 rats (7/24 readings, 29.2%) showing dysplasia and 1/12 rats (8.3%) developing adenocarcinoma. In contrast, in rats treated with MNNG alone, 8/10 (80%) developed dysplasia and adenocarcinoma, with 6/10 rats (60%) showing dysplasia and 2/10 rats (20%) developing adenocarcinoma. The effect of combining both agents was also associated with significant suppression of the expression of the tumor marker Ki-67 and remarkable induction in the apoptotic gastric cancer cells via mitochondrial-dependent pathway as indicated by the upregulation in p53 expression, Bax expression, downregulation in Bcl-2 expression, an increase in Bax/Bcl-2 ratio, and an activation of caspase-3. In addition, Biobran treatment induced cell-cycle arrest in the subG1 phase, where the hypodiploid cell population was markedly increased. Moreover, Biobran treatment protected rats against MNNG-induced significant decrease in lymphocyte levels. We conclude that Biobran provides protection against chemical induction of glandular stomach carcinogenesis in rats and may be useful for the treatment of human patients with gastric cancer.
Collapse
Affiliation(s)
| | | | - Deyu Pan
- Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | | | - Mamdooh Ghoneum
- Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| |
Collapse
|
34
|
Zhang Z, Smith C, Li W, Ashworth J. Characterization of Nitric Oxide Modulatory Activities of Alkaline-Extracted and Enzymatic-Modified Arabinoxylans from Corn Bran in Cultured Human Monocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8128-8137. [PMID: 27718577 DOI: 10.1021/acs.jafc.6b02896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ingestion of foods and food-derived substances that may mediate the immune system is widely studied. Evidence suggests cereal arabinoxylans (AXs) have immunomodulatory activities that may impart health benefits in terms of immune enhancement. This study extracted AXs from corn bran using alkali and developed a modification process using three endoxylanases to obtain fractions of lower molecular weight ranges. In vitro studies showed extracted and modified AXs significantly (P < 0.05) elevated nitric oxide (NO) synthesis by the human U937 monocytic cell line (ranging from 53.7 ± 1.1 to 62.9 ± 1.2 μM per million viable cells) at all concentrations tested (5-1000 μg/mL), indicative of immune enhancement compared to an untreated control (43.7 ± 1.9 μM per million viable cells). The study suggested the dose range and Mw distribution of AXs are key determinants of immune-modulatory activity. AXs in the low Mw range (0.1-10 KDa) were the most effective at inducing NO secretion by U937 macrophages at low AX concentration ranges (5-50 μg/mL), with NO production peaking at 62.9 ± 1.2 μM per million viable cells with 5 μg/mL of AX (P = 0.0009). In contrast, AXs in the high Mw range (100-794 kDa) were most effective at inducing NO at high AX concentration ranges (500-1000 μg/mL) with NO production reaching a maximum of 62.7 ± 1.3 μM per million viable cells at 1000 μg/mL of AX (P = 0.0011). The findings suggest that dietary AXs from corn bran may heighten innate immune responses in the absence of infection or disease.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- Department of Food and Tourism Management, Manchester Metropolitan University , Manchester M15 6BG, U.K
| | - Christopher Smith
- Institute of Food Science and Innovation, University of Chester , Chester CH1 4BJ, U.K
| | - Weili Li
- Institute of Food Science and Innovation, University of Chester , Chester CH1 4BJ, U.K
| | - Jason Ashworth
- School of Healthcare Science, Manchester Metropolitan University , E203 John Dalton Building, Chester Street, Manchester M1 5GD, U.K
| |
Collapse
|
35
|
Golombick T, Diamond TH, Manoharan A, Ramakrishna R. Addition of Rice Bran Arabinoxylan to Curcumin Therapy May Be of Benefit to Patients With Early-Stage B-Cell Lymphoid Malignancies (Monoclonal Gammopathy of Undetermined Significance, Smoldering Multiple Myeloma, or Stage 0/1 Chronic Lymphocytic Leukemia): A Preliminary Clinical Study. Integr Cancer Ther 2016; 15:183-9. [PMID: 27154182 DOI: 10.1177/1534735416635742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/25/2016] [Indexed: 11/16/2022] Open
Abstract
Hypothesis Prior studies on patients with early B-cell lymphoid malignancies suggest that early intervention with curcumin may lead to delay in progressive disease and prolonged survival. These patients are characterized by increased susceptibility to infections. Rice bran arabinoxylan (Ribraxx) has been shown to have immunostimulatory, anti-inflammatory, and proapoptotic effects. We postulated that addition of Ribraxx to curcumin therapy may be of benefit. Study design Monoclonal gammopathy of undetermined significance (MGUS)/smoldering multiple myeloma (SMM) or stage 0/1 chronic lymphocytic leukemia (CLL) patients who had been on oral curcumin therapy for a period of 6 months or more were administered both curcumin (as Curcuforte) and Ribraxx. Methods Ten MGUS/SMM patients and 10 patients with stage 0/1 CLL were administered 6 g of curcumin and 2 g Ribraxx daily. Blood samples were collected at baseline and at 2-month intervals for a period of 6 months, and various markers were monitored. MGUS/SMM patients included full blood count (FBC); paraprotein; free light chains/ratio; C-reactive protein (CRP)and erythrocyte sedimentation rate (ESR); B2 microglobulin and immunological markers. Markers monitored for stage 0/1 CLL were FBC, CRP and ESR, and immunological markers. Results Of 10 MGUS/SMM patients,5 (50%) were neutropenic at baseline, and the Curcuforte/Ribraxx combination therapy showed an increased neutrophil count, varying between 10% and 90% among 8 of the 10 (80%) MGUS/SMM patients. An additional benefit of the combination therapy was the potent effect in reducing the raised ESR in 4 (44%) of the MGUS/SMM patients. Conclusion Addition of Ribraxx to curcumin therapy may be of benefit to patients with early-stage B-cell lymphoid malignancies.
Collapse
|
36
|
Wang L, Li Y, Zhu L, Yin R, Wang R, Luo X, Li Y, Li Y, Chen Z. Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro. Int J Biol Macromol 2016; 88:424-32. [PMID: 27064087 DOI: 10.1016/j.ijbiomac.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
Polysaccharides purified from rice bran show antitumor activity against tumor cells, yet the mechanism of this action remains poorly understood. To address this issue, our study evaluated the effect of rice bran polysaccharides on mouse melanoma cell line B16, and Raw264.7 macrophages. Rice bran polysaccharides (RBP) failed to inhibit B16 cell growth in vitro. However, Raw264.7 macrophages treated by RBP enhancement of cytotoxic effects. The cytotoxicity was confirmed by the stimulation of nitric oxide (NO) production and tumor necrosis factor-α (TNF-α) secretion on Raw264.7 macrophages in a dose-dependent manner. RBP2, a fraction of RBP, notably enhanced the inhibition of B16 cells and boosted the immunepotentiation effect compared with RBP. To further enhance the inhibition of B16 cell growth, sulfated polysaccharides (SRBP) was derived using the chlorosulfonic acid-pyridine method. SRBP2 was found to suppress B16 cell growth, reduce B16 cell survival and stimulate NO and TNF-α production. However, SRBP2 displayed a cytotoxic effect on Raw264.7 macrophages. These results suggest that the antitumor activity of RBP and RBP2 is mediated mainly through the activation of macrophages. SRBP2 exerts its antitumor activity by inducing apoptosis in tumor cells and the secretion of NO and TNF-α.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food safety and quality control, Jiangsu province, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122,Jiangsu, China.
| | - Yulin Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, 11 Cihu Road, Huangshi, 435002, China
| | - Lidan Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food safety and quality control, Jiangsu province, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122,Jiangsu, China
| | - Ran Yin
- Department of Food Science, College of Agriculture and Life Science, Cornell University, Ithaca, 14085, NY, United States
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food safety and quality control, Jiangsu province, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122,Jiangsu, China
| | - Xiaohu Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food safety and quality control, Jiangsu province, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122,Jiangsu, China
| | - Yongfu Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food safety and quality control, Jiangsu province, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122,Jiangsu, China
| | - Yanan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food safety and quality control, Jiangsu province, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122,Jiangsu, China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food safety and quality control, Jiangsu province, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122,Jiangsu, China
| |
Collapse
|
37
|
Mendis M, Leclerc E, Simsek S. Arabinoxylans, gut microbiota and immunity. Carbohydr Polym 2015; 139:159-66. [PMID: 26794959 DOI: 10.1016/j.carbpol.2015.11.068] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 01/12/2023]
Abstract
Arabinoxylan (AX) is a non-starch polysaccharide found in many cereal grains and is considered as a dietary fiber. Despite their general structure, there is structural heterogeneity among AX originating from different botanical sources. Furthermore, the extraction procedure and hydrolysis by xylolytic enzymes can further render differences to theses AX. The aim of this review was to address the effects of AX on the gut bacteria and their immunomodulatory properties. Given the complex structure of AX, we also aimed to discuss how the structural heterogeneity of AX affects its role in bacterial growth and immunomodulation. The existing literature indicates the role of fine structural details of AX on its potential as polysaccharides that can impact the gut associated microbial growth and immune system.
Collapse
Affiliation(s)
- Mihiri Mendis
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, Fargo, ND, USA
| | - Estelle Leclerc
- North Dakota State University, Department of Pharmaceutical Sciences, College of Health Professions, Fargo, ND, USA
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, Fargo, ND, USA.
| |
Collapse
|
38
|
Pérez-Martínez A, Valentín J, Fernández L, Hernández-Jiménez E, López-Collazo E, Zerbes P, Schwörer E, Nuñéz F, Martín IG, Sallis H, Díaz MÁ, Handgretinger R, Pfeiffer MM. Arabinoxylan rice bran (MGN-3/Biobran) enhances natural killer cell–mediated cytotoxicity against neuroblastoma in vitro and in vivo. Cytotherapy 2015; 17:601-12. [DOI: 10.1016/j.jcyt.2014.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022]
|
39
|
Zhang S, Li W, Smith CJ, Musa H. Cereal-Derived Arabinoxylans as Biological Response Modifiers: Extraction, Molecular Features, and Immune-Stimulating Properties. Crit Rev Food Sci Nutr 2015; 55:1035-52. [DOI: 10.1080/10408398.2012.705188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Savitha Prashanth MR, Shruthi RR, Muralikrishna G. Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana, v. Indaf 15) bran. Journal of Food Science and Technology 2014; 52:6049-54. [PMID: 26345027 DOI: 10.1007/s13197-014-1664-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022]
Abstract
Biological activities of alkali extracted (Barium hydroxide: BE-480 kDa, Potassium hydroxide: KE1-1080 and KE2-40 kDa), purified arabinoxylans (AX) from the finger millet bran varying in their molecular weight, phenolic acid content, arabinose to xylose ratios were evaluated for their immune-stimulatory activities using murine lymphocytes and peritoneal exudate macrophages. All three purified AX displayed significant (p < 0.001) mitogenic activity and activation of macrophages including phagocytosis. Among these BE has shown higher enhancing lymphocyte proliferation (>2 fold) and macrophage phagocytosis than KE1 and KE2. The above results clearly documented that the immunostimulatory activity of arabinoxylans is directly proportional to the amount of ferulic acid content (0.11 mg/100 g), whereas molecular weight as well as arabinose/xylose ratio, did not have any bearing. Purified AX from the finger millet bran can be explored as a potent natural immunomodulator.
Collapse
Affiliation(s)
- M R Savitha Prashanth
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
| | - R R Shruthi
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
| | - G Muralikrishna
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
| |
Collapse
|
41
|
Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.068] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Dietary supplementation with rice bran fermented with Lentinus edodes increases interferon-γ activity without causing adverse effects: a randomized, double-blind, placebo-controlled, parallel-group study. Nutr J 2014; 13:35. [PMID: 24755139 PMCID: PMC4008373 DOI: 10.1186/1475-2891-13-35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Abstract
Background The purpose of this study was to investigate the hypothesis that dietary supplementation with rice bran fermented with Lentinus edodes (rice bran exo-biopolymer, RBEP), a substance known to contain arabinoxylan, enhances natural killer (NK) cell activity and modulates cytokine production in healthy adults. Methods This study was designed in a randomized, double-blind, placebo-controlled, and parallel-group format. Eighty healthy participants with white blood cell counts of 4,000-8,000 cells/μL were randomly assigned to take six capsules per day of either 3 g RBEP or 3 g placebo for 8 weeks. Three participants in the placebo group were excluded after initiation of the protocol; no severe adverse effects from RBEP supplementation were reported. NK cell activity of peripheral blood mononuclear cells was measured using nonradioactive cytotoxicity assay kits and serum cytokine concentrations included interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-4, IL-10, and IL-12 were measured by Bio-Plex cytokine assay kit. This study was registered with the Clinical Research Information Service (KCT0000536). Results Supplementation of RBEP significantly increased IFN-γ production compared with the placebo group (P = 0.012). However, RBEP supplementation did not affect either NK cell activity or cytokine levels, including IL-2, IL-4, IL-10, IL-12, and TNF-α, compared with the placebo group. Conclusions The data obtained in this study indicate that RBEP supplementation increases IFN-γ secretion without causing significant adverse effects, and thus may be beneficial to healthy individuals. This new rice bran-derived product may therefore be potentially useful to include in the formulation of solid and liquid foods designed for treatment and prevention of pathological states associated with defective immune responses.
Collapse
|
43
|
Ghoneum M, Badr El-Din NK, Abdel Fattah SM, Tolentino L. Arabinoxylan rice bran (MGN-3/Biobran) provides protection against whole-body γ-irradiation in mice via restoration of hematopoietic tissues. JOURNAL OF RADIATION RESEARCH 2013; 54:419-29. [PMID: 23287771 PMCID: PMC3650744 DOI: 10.1093/jrr/rrs119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The aim of the current study is to examine the protective effect of MGN-3 on overall maintenance of hematopoietic tissue after γ-irradiation. MGN-3 is an arabinoxylan from rice bran that has been shown to be a powerful antioxidant and immune modulator. Swiss albino mice were treated with MGN-3 prior to irradiation and continued to receive MGN-3 for 1 or 4 weeks. Results were compared with mice that received radiation (5 Gy γ rays) only, MGN-3 (40 mg/kg) only and control mice (receiving neither radiation nor MGN-3). At 1 and 4 weeks post-irradiation, different hematological, histopathological and biochemical parameters were examined. Mice exposed to irradiation alone showed significant depression in their complete blood count (CBC) except for neutrophilia. Additionally, histopathological studies showed hypocellularity of their bone marrow, as well as a remarkable decrease in splenic weight/relative size and in number of megakaryocytes. In contrast, pre-treatment with MGN-3 resulted in protection against irradiation-induced damage to the CBC parameters associated with complete bone marrow cellularity, as well as protection of the aforementioned splenic changes. Furthermore, MGN-3 exerted antioxidative activity in whole-body irradiated mice, and provided protection from irradiation-induced loss of body and organ weight. In conclusion, MGN-3 has the potential to protect progenitor cells in the bone marrow, which suggests the possible use of MGN-3/Biobran as an adjuvant treatment to counteract the severe adverse side effects associated with radiation therapy.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Department of Otolaryngology, Charles Drew University of Medicine and Science, Los Angeles, California 90059, USA.
| | | | | | | |
Collapse
|
44
|
Hosoda A, Okai Y, Kasahara E, Inoue M, Snhimizu M, Usui Y, Sekiyama A, Higashi-Okai K. Potent immunomodulating effects of bran extracts of traditional Japanese millets on nitric oxide and cytokine production of macrophages (RAW264.7) induced by lipopolysaccharide. J UOEH 2012; 34:285-296. [PMID: 23270252 DOI: 10.7888/juoeh.34.285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To estimate the potent immunomodulating effects of different types of traditional Japanese millet, we analyzed the effect of bran extracts of foxtail millet (Awa in Japanese), barnyard millet (Hie) and proso millet (Mochi-kibi) on nitric oxide (NO) and inflammatory cytokine production induced by lipopolysaccharide (LPS) in a mouse macrophage cell line (RAW264.7 cells). All methanol extracts of these millet brans showed suppressive activities against the production of NO and inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 in LPS-stimulated macrophages, which were not responsible for their cytotoxic activities. These immunosuppressive activities were roughly proportional to the contents of the phenolic compounds in their extracts. Especially, the extract of proso millet exhibited the strongest immunosuppressing effect, which was associated with the highest content of phenolic compound. However, the extracts did not exhibit significant suppressive effects on the production of an anti-inflammatory cytokine, IL-10, in the same macrophage culture system. These results suggest that traditional Japanese millets have potent immunomodulating activities against the production of NO and cytokine production in activated macrophages.
Collapse
Affiliation(s)
- Akemi Hosoda
- Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Revilla E, Santa-María C, Miramontes E, Candiracci M, Rodríguez-Morgado B, Carballo M, Bautista J, Castaño A, Parrado J. Antiproliferative and immunoactivatory ability of an enzymatic extract from rice bran. Food Chem 2012; 136:526-31. [PMID: 23122093 DOI: 10.1016/j.foodchem.2012.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 06/20/2012] [Accepted: 08/18/2012] [Indexed: 12/18/2022]
Abstract
The validation of natural products as source of functional foods or nutraceuticals has become an important issue in current health research. Thus, the present work has tested on MOLT-4 cells (human T cell acute lymphoblastic leukemic) the antiproliferative effect of a water-soluble enzymatic extract from rice bran (EERB). Present work shows that EERB induces cellular death in MOLT-4 cells in a dose-dependent way (0-10mg/mL) but not in non-tumoral lymphocytes. Flow cytometric analysis of MOLT-4 cells treated with EERB showed the presence of death cells by apoptosis rather than necrosis. Additionally, EERB also exerts an immunoactivatory effect on N13 microglia cells, by inducing TNF-alpha (tumour necrosis factor-α) expression, which plays a key role in the innate immune response to infection. Accordingly, we can propose EERB as a useful natural standardized extract with antiproliferative and immunoactivatory ability that would be beneficial to apply in the functional food field.
Collapse
Affiliation(s)
- E Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Henderson AJ, Ollila CA, Kumar A, Borresen EC, Raina K, Agarwal R, Ryan EP. Chemopreventive properties of dietary rice bran: current status and future prospects. Adv Nutr 2012; 3:643-53. [PMID: 22983843 PMCID: PMC3648746 DOI: 10.3945/an.112.002303] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emerging evidence suggests that dietary rice bran may exert beneficial effects against several types of cancer, such as breast, lung, liver, and colorectal cancer. The chemopreventive potential has been related to the bioactive phytochemicals present in the bran portion of the rice such as ferulic acid, tricin, β-sitosterol, γ-oryzanol, tocotrienols/tocopherols, and phytic acid. Studies have shown that the anticancer effects of the rice bran-derived bioactive components are mediated through their ability to induce apoptosis, inhibit cell proliferation, and alter cell cycle progression in malignant cells. Rice bran bioactive components protect against tissue damage through the scavenging of free radicals and the blocking of chronic inflammatory responses. Rice bran phytochemicals have also been shown to activate anticancer immune responses as well as affecting the colonic tumor microenvironment in favor of enhanced colorectal cancer chemoprevention. This is accomplished through the modulation of gut microflora communities and the regulation of carcinogen-metabolizing enzymes. In addition, the low cost of rice production and the accessibility of rice bran make it an appealing candidate for global dietary chemoprevention. Therefore, the establishment of dietary rice bran as a practical food-derived chemopreventive agent has the potential to have a significant impact on cancer prevention for the global population.
Collapse
Affiliation(s)
- Angela J. Henderson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Cadie A. Ollila
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Ajay Kumar
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Erica C. Borresen
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anshutz Medical Campus, Aurora, CO; and
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anshutz Medical Campus, Aurora, CO; and,University of Colorado Cancer Center, University of Colorado, Aurora, CO
| | - Elizabeth P. Ryan
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO,University of Colorado Cancer Center, University of Colorado, Aurora, CO,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Henderson AJ, Kumar A, Barnett B, Dow SW, Ryan EP. Consumption of rice bran increases mucosal immunoglobulin A concentrations and numbers of intestinal Lactobacillus spp. J Med Food 2012; 15:469-75. [PMID: 22248178 PMCID: PMC3338111 DOI: 10.1089/jmf.2011.0213] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/18/2011] [Indexed: 12/17/2022] Open
Abstract
Gut-associated lymphoid tissue maintains mucosal homeostasis by combating pathogens and inducing a state of hyporesponsiveness to food antigens and commensal bacteria. Dietary modulation of the intestinal immune environment represents a novel approach for enhancing protective responses against pathogens and inflammatory diseases. Dietary rice bran consists of bioactive components with disease-fighting properties. Therefore, we conducted a study to determine the effects of whole dietary rice bran intake on mucosal immune responses and beneficial gut microbes. Mice were fed a 10% rice bran diet for 28 days. Serum and fecal samples were collected throughout the study to assess total immunoglobulin A (IgA) concentrations. Tissue samples were collected for cellular immune phenotype analysis, and concentrations of native gut Lactobacillus spp. were enumerated in the fecal samples. We found that dietary rice bran induced an increase in total IgA locally and systemically. In addition, B lymphocytes in the Peyer's patches of mice fed rice bran displayed increased surface IgA expression compared with lymphocytes from control mice. Antigen-presenting cells were also influenced by rice bran, with a significant increase in myeloid dendritic cells residing in the lamina propria and mesenteric lymph nodes. Increased colonization of native Lactobacillus was observed in rice bran-fed mice compared with control mice. These findings suggest that rice bran-induced microbial changes may contribute to enhanced mucosal IgA responses, and we conclude that increased rice bran consumption represents a promising dietary intervention to modulate mucosal immunity for protection against enteric infections and induction of beneficial gut bacteria.
Collapse
Affiliation(s)
- Angela J. Henderson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Ajay Kumar
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brittany Barnett
- Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven W. Dow
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth P. Ryan
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
48
|
Wang J, Cai Y, Ji H, Feng J, Ayana DA, Niu J, Jiang Y. Serum IL-33 levels are associated with liver damage in patients with chronic hepatitis B. J Interferon Cytokine Res 2012; 32:248-53. [PMID: 22304300 DOI: 10.1089/jir.2011.0109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This aim of this study was to assess the potential role of IL-33 in the pathogenic process of chronic hepatitis B (CHB). The levels of serum IL-33 and soluble ST2 (sST2) in CHB patients and healthy controls (HC) were determined using enzyme-linked-immunosorbent serologic assay, and the Th1 (IFN-γ, TNF-α, IL-2) and Th2 (IL-4, IL-6, IL-10) cytokines by cytometric bead array. It was found that the levels of serum IL-33 in CHB patients were significantly higher than that of HC at the base line, but decreased after treatment with adefovir dipivoxil for 12 weeks. The levels of serum sST2, as a decoy receptor of IL-33, were significantly higher in CHB patients than the HC. There was no correlation between the levels of serum sST2 and IL-33. The concentrations of serum Th1 (IFN-γ, IL-2) and Th2 (IL-6, IL-10) cytokines in CHB patients significantly increased after treatment compared to the baseline. These results suggest that IL-33 is involved in the pathogenesis of CHB and that adefovir dipivoxil therapy can attenuate the production of IL-33 in patients with CHB.
Collapse
Affiliation(s)
- Juan Wang
- Department of Central Laboratory, the Second Part of First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
49
|
MONOBE M, KATAYANAGI Y, MAEDA-YAMAMOTO M, HIRAMOTO S. Enhancement of the Immunostimulatory Activity of 1,25-Dihydroxyvitamin D3-Differentiated HL60 Cells with an Arabinoxylan from Wheat Bran. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Wang J, Zhao P, Guo H, Sun X, Jiang Z, Xu L, Feng J, Niu J, Jiang Y. Serum IL-33 levels are associated with liver damage in patients with chronic hepatitis C. Mediators Inflamm 2012; 2012:819636. [PMID: 22315510 PMCID: PMC3270460 DOI: 10.1155/2012/819636] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 12/31/2022] Open
Abstract
Interleukin-33 (IL-33) is associated with the development of Th2 responses. This study examined the potential role of IL-33 in the pathogenic process of chronic hepatitis C (CHC) in Chinese patients. The levels of serum IL-33 and sST2 in 154 patients with CHC, 24 with spontaneously resolved HCV (SR-HCV) infection and 20 healthy controls (HC), were analyzed by ELISA. The concentrations of serum IL-2, IFN-γ, TNF-α, IL-4, IL-6, and IL-10, HCV loads, ALT, AST, and HCV-Ab were measured. We found that the levels of serum IL-33 in CHC patients were significantly higher than those of SR-HCV and HC but decreased after treatment with interferon for 12 weeks. More importantly, the levels of serum IL-33 were correlated with the concentrations of ALT and AST in CHC patients. The levels of serum sST2, as a decoy receptor of IL-33, were significantly higher in CHC and SR-CHC patients than those in HC, and there was no correlation between the levels of serum sST2 and IL-33. The concentrations of serum IFN-γ and IL-6 in CHC patients were significantly lower than those of SR-HCV. These data suggest that IL-33 may be a pathogenic factor contributing to CHC-related liver injury.
Collapse
Affiliation(s)
- Juan Wang
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Pingwei Zhao
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Hui Guo
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Xiguang Sun
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Zhenyu Jiang
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Lijun Xu
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Junyan Feng
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun 130032, China
- *Junqi Niu: and
| | - Yanfang Jiang
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
- *Yanfang Jiang:
| |
Collapse
|