1
|
Lemos FS, Prins CA, Martinez AMB, Carpi-Santos R, Neumann AS, Meireles-da-Costa N, Luisetto R, de Mello-Coelho V, Oliveira FL. UHT Cow's Milk Supplementation Affects Cell Niches and Functions of the Gut-Brain Axis in BALB/c Mice. Biomedicines 2024; 12:2448. [PMID: 39595015 PMCID: PMC11591918 DOI: 10.3390/biomedicines12112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cow's milk is a bioactive cocktail with essential nutritional factors that is widely consumed during early childhood development. However, it has been associated with allergic responses and immune cell activation. Here, we investigate whether cow's milk consumption regulates gut-brain axis functions and affects patterns of behaviors in BALB/c mice, previously described by present low sociability, significant stereotypes, and restricted interest features. The major objectives consist of to investigate cow's milk supplementation as possible triggers interfering with cellular niches of the gut-brain axis and behavioral patterns. METHODS Male BALB/c at 6 weeks were randomly divided into two groups, one supplemented with cow's milk processed at ultra-high temperature (UHT) and another group receiving water (controls) three times per day (200 μL per dose) for one week. RESULTS Milk consumption disturbed histological compartments of the small intestine, including niches of KI67+-proliferating cells and CD138+ Ig-secreting plasma cells. In the liver, milk intake was associated with pro-inflammatory responses, oxidative stress, and atypical glycogen distribution. Milk-supplemented mice showed significant increase in granulocytes (CD11b+SSChigh cells) and CD4+ T cells in the blood. These mice also had neuroinflammatory signals, including an enhanced number of cortical Iba-1+ microglial cells in the brain and significant cerebellar expression of nitric oxide synthase 2 by Purkinje cells. These phenotypes and tissue disorders in milk-supplemented mice were associated with atypical behaviors, including low sociability, high restricted interest, and severe stereotypies. Moreover, synaptic niches were also disturbed after milk consumption, and Shank-3+ and Drebrin+ post-synaptic cells were significantly reduced in the brain of these mice. CONCLUSIONS Together, these data suggest that milk consumption interfered with the gut-brain axis in BALB/c mice and increased atypical behaviors, at least in part, linked to synapse dysfunctions, neuroinflammation, and oxidative stress regulation.
Collapse
Affiliation(s)
- Felipe S. Lemos
- Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-360, Brazil;
| | - Caio A. Prins
- Department of Pathology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (C.A.P.); (A.M.B.M.)
| | - Ana M. B. Martinez
- Department of Pathology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (C.A.P.); (A.M.B.M.)
| | - Raul Carpi-Santos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (R.C.-S.); (A.S.N.); (V.d.M.-C.)
| | - Arthur S. Neumann
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (R.C.-S.); (A.S.N.); (V.d.M.-C.)
| | - Nathalia Meireles-da-Costa
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro 20230-130, Brazil;
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Valeria de Mello-Coelho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (R.C.-S.); (A.S.N.); (V.d.M.-C.)
| | - Felipe L. Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (R.C.-S.); (A.S.N.); (V.d.M.-C.)
| |
Collapse
|
2
|
Ahmed R, Anam K, Ahmed H. Development of Galectin-3 Targeting Drugs for Therapeutic Applications in Various Diseases. Int J Mol Sci 2023; 24:8116. [PMID: 37175823 PMCID: PMC10179732 DOI: 10.3390/ijms24098116] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 (Gal3) is one of the most studied members of the galectin family that mediate various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Since Gal3 is pro-inflammatory, it is involved in many diseases that are associated with chronic inflammation such as cancer, organ fibrosis, and type 2 diabetes. As a multifunctional protein involved in multiple pathways of many diseases, Gal3 has generated significant interest in pharmaceutical industries. As a result, several Gal3-targeting therapeutic drugs are being developed to address unmet medical needs. Based on the PubMed search of Gal3 to date (1987-2023), here, we briefly describe its structure, carbohydrate-binding properties, endogenous ligands, and roles in various diseases. We also discuss its potential antagonists that are currently being investigated clinically or pre-clinically by the public and private companies. The updated knowledge on Gal3 function in various diseases could initiate new clinical or pre-clinical investigations to test therapeutic strategies, and some of these strategies could be successful and recognized as novel therapeutics for unmet medical needs.
Collapse
Affiliation(s)
| | | | - Hafiz Ahmed
- GlycoMantra Inc., Biotechnology Center, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Vaccaro J, Canziani KE, Guzmán L, Bernedo V, García M, Altamirano EM, Feregotti E, Curciarello R, Muglia CI, Docena GH. Type-2 Cytokines Promote the Secretion of the Eosinophil–Attractant CCL26 by Intestinal Epithelial Cells in Food-Sensitized Patients. Front Immunol 2022; 13:909896. [PMID: 35799778 PMCID: PMC9254714 DOI: 10.3389/fimmu.2022.909896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Several inflammatory processes of the bowel are characterized by an accumulation of eosinophils at inflammation sites. The mechanisms that govern mucosal infiltration with eosinophils are not fully understood. In this work, we studied the colorectal polyp-confined tissue containing eosinophils and we hypothesized that intestinal epithelial cells are the cell source of eotaxin-3 or CCL26, a potent chemoattractant for eosinophils. We analyzed colorectal polyps (n=50) from pediatric patients with rectal bleeding by H&E staining and eosin staining, and different pro-inflammatory cytokines were assessed by RT-qPCR and ELISA. IgE and CCL26 were investigated by RT-qPCR, ELISA and confocal microscopy. Finally, the intracellular signaling pathway that mediates the CCL26 production was analyzed using a kinase array and immunoblotting in human intestinal Caco-2 cell line. We found a dense cell agglomeration within the polyps, with a significantly higher frequency of eosinophils than in control adjacent tissue. IL-4 and IL-13 were significantly up-regulated in polyps and CCL26 was elevated in the epithelial compartment. Experiments with Caco-2 cells showed that the type-2 cytokine IL-13 increased STAT3 and STAT6 phosphorylation and eotaxin-3 secretion. The addition of the blocking antibody Dupilumab or the inhibitor Ruxolitinib to the cytokine-stimulated Caco-2 cells diminished the CCL26 secretion to basal levels in a dose-dependent manner. In conclusion, our findings demonstrate a high frequency of eosinophils, and elevated levels of type-2 cytokines and eotaxin-3 in the inflammatory stroma of colorectal polyps from pediatric patients. Polyp epithelial cells showed to be the main cell source of CCL26, and IL-13 was the main trigger of this chemokine through the activation of the STAT3/STAT6/JAK1-2 pathway. We suggest that the epithelial compartment actively participates in the recruitment of eosinophils to the colonic polyp-confined inflammatory environment.
Collapse
Affiliation(s)
- Julián Vaccaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Karina Eva Canziani
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Luciana Guzmán
- Servicio de Gastroenterología, Hospital de Niños Sor María Ludovica, La Plata, Argentina
| | - Viviana Bernedo
- Servicio de Gastroenterología, Hospital de Niños Sor María Ludovica, La Plata, Argentina
| | - Marcela García
- Sala de Alergia, Hospital de Niños Sor María Ludovica, La Plata, Argentina
| | | | - Emanuel Feregotti
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Cecilia Isabel Muglia
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
- *Correspondence: Guillermo Horacio Docena,
| |
Collapse
|
4
|
Abstract
Cow's milk is a highly nutritious biological fluid that provides nourishment and immunity to infants when breastfeeding declines. However, some infants, children, and adults are allergic to cow's milk because milk contains potential allergens in the form of proteins. Casein and whey proteins and their coagulated sub-fractions in the milk such as αS1-casein, αS2-casein, β-casein, κ-casein and α-lactalbumin, β-lactoglobulin, bovine serum albumin, immunoglobulins, lactoferrin, respectively are the major etiological determinant of cow's milk allergy (CMA). Moreover, milk processing techniques such as homogenization and pasteurization alter the milk fat and whey protein's molecular structure and serve them as allergens to the immune system of allergic individuals. Strict exclusion of nutrient-rich milk and other dairy products from diet puts children with CMA at higher nutritional risk. Thus, regular nutritional monitoring, the inclusion of protein and mineral-rich supplements as a substitute for cow's milk, management of animal genetics (sheep, goats, buffaloes, camel, mare, donkey, yak), and milk processing to produce non-allergenic milk by inactivating allergic proteins for designer nutrition is essentially required. This review paper details the prevalence, molecular profiling of milk allergens (proteins), body immune response against CMA, consequences of milk processing, treatment, and novel role of galectins as potentially allergy suppressors.
Collapse
Affiliation(s)
- Lily Jaiswal
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Mulumebet Worku
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| |
Collapse
|
5
|
Jung J, Surh CD, Lee YJ. Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells. Mol Cells 2019; 42:313-320. [PMID: 30841027 PMCID: PMC6530640 DOI: 10.14348/molcells.2019.2431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of CD8αβ IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced CD8αβ IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of CD8αβ IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.
Collapse
Affiliation(s)
- Jisun Jung
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| | - Charles D. Surh
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, CA 92037,
USA
| | - You Jeong Lee
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| |
Collapse
|
6
|
Ahmed H, AlSadek DMM. Galectin-3 as a Potential Target to Prevent Cancer Metastasis. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:113-21. [PMID: 26640395 PMCID: PMC4662425 DOI: 10.4137/cmo.s29462] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 12/19/2022]
Abstract
Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity.
Collapse
Affiliation(s)
- Hafiz Ahmed
- President and Chief Scientific Officer, GlycoMantra, Inc., Aldie, VA, USA
| | - Dina M M AlSadek
- Department of Histology and Cytology, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
The role of lectins in allergic sensitization and allergic disease. J Allergy Clin Immunol 2013; 132:27-36. [DOI: 10.1016/j.jaci.2013.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/03/2013] [Accepted: 02/01/2013] [Indexed: 01/05/2023]
|
8
|
The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine. Cell Death Dis 2011; 2:e163. [PMID: 21614093 PMCID: PMC3122123 DOI: 10.1038/cddis.2011.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.
Collapse
|
9
|
Ahmed H, Guha P, Kaptan E, Bandyopadhyaya G. Galectin-3: a potential target for cancer prevention. TRENDS IN CARBOHYDRATE RESEARCH 2011; 3:13-22. [PMID: 25484547 PMCID: PMC4254724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein-carbohydrate interactions play significant role in modulating cell-cell and cell-extracellular matrix interactions, which, in turn, mediate various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding protein family, is found multifunctional and is involved in normal growth development as well as cancer progression and metastasis, but the detailed mechanisms of its functions are not well understood. This review discusses its structure, binding properties, transcriptional regulation and roles in homotypic/heterotypic cell adhesion, angiogenesis and apoptosis.
Collapse
Affiliation(s)
- Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Greenebaum Cancer Center, Baltimore, Maryland, USA
| | - Prasun Guha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Engin Kaptan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gargi Bandyopadhyaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
|
11
|
Dias-Baruffi M, Stowell SR, Song SC, Arthur CM, Cho M, Rodrigues LC, Montes MAB, Rossi MA, James JA, McEver RP, Cummings RD. Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 2010; 20:507-20. [PMID: 20053628 DOI: 10.1093/glycob/cwp203] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed alphahGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using alphahGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
Collapse
Affiliation(s)
- Marcelo Dias-Baruffi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|