1
|
Patrucco F, Curtoni A, Sidoti F, Zanotto E, Bondi A, Albera C, Boffini M, Cavallo R, Costa C, Solidoro P. Herpes Virus Infection in Lung Transplantation: Diagnosis, Treatment and Prevention Strategies. Viruses 2023; 15:2326. [PMID: 38140567 PMCID: PMC10747259 DOI: 10.3390/v15122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
Lung transplantation is an ultimate treatment option for some end-stage lung diseases; due to the intense immunosuppression needed to reduce the risk of developing acute and chronic allograft failure, infectious complications are highly incident. Viral infections represent nearly 30% of all infectious complications, with herpes viruses playing an important role in the development of acute and chronic diseases. Among them, cytomegalovirus (CMV) is a major cause of morbidity and mortality, being associated with an increased risk of chronic lung allograft failure. Epstein-Barr virus (EBV) is associated with transformation of infected B cells with the development of post-transplantation lymphoproliferative disorders (PTLDs). Similarly, herpes simplex virus (HSV), varicella zoster virus and human herpesviruses 6 and 7 can also be responsible for acute manifestations in lung transplant patients. During these last years, new, highly sensitive and specific diagnostic tests have been developed, and preventive and prophylactic strategies have been studied aiming to reduce and prevent the incidence of these viral infections. In this narrative review, we explore epidemiology, diagnosis and treatment options for more frequent herpes virus infections in lung transplant patients.
Collapse
Affiliation(s)
- Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità di Novara, Corso Mazzini 18, 28100 Novara, Italy
| | - Antonio Curtoni
- Division of Virology, Department of Public Health and Pediatrics, University of Turin, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesca Sidoti
- Division of Virology, Department of Public Health and Pediatrics, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Elisa Zanotto
- Division of Virology, Department of Public Health and Pediatrics, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Alessandro Bondi
- Division of Virology, Department of Public Health and Pediatrics, University of Turin, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Carlo Albera
- Division of Respiratory Medicine, Cardiovascular and Thoracic Department, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Medical Sciences Department, University of Turin, 10126 Turin, Italy
| | - Massimo Boffini
- Cardiac Surgery Division, Surgical Sciences Department, AOU Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy
| | - Rossana Cavallo
- Division of Virology, Department of Public Health and Pediatrics, University of Turin, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Costa
- Division of Virology, Department of Public Health and Pediatrics, University of Turin, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Paolo Solidoro
- Division of Respiratory Medicine, Cardiovascular and Thoracic Department, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Medical Sciences Department, University of Turin, 10126 Turin, Italy
| |
Collapse
|
2
|
Li J, Gardiner BJ, Stankovic S, Oates CVL, Cristiano Y, Levvey BJ, Brooks AG, Snell GI, Westall GP, Sullivan LC. Cytomegalovirus Immunity Assays Predict Viremia but not Replication Within the Lung Allograft. Transplant Direct 2023; 9:e1501. [PMID: 37313314 PMCID: PMC10259634 DOI: 10.1097/txd.0000000000001501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cytomegalovirus (CMV) infection causes significant morbidity and mortality in lung transplant recipients. Current guidelines use pretransplant donor and recipient CMV serostatus to predict the risk of subsequent CMV replication and length of antiviral prophylaxis. Immunological monitoring may better inform the risk of CMV infection in patients, thereby allowing for improved tailoring of antiviral prophylaxis. In this study, we compared 2 commercially available assays, the QuantiFERON-CMV (QFN-CMV) and T-Track-CMV (enzyme-linked immunosorbent spot assay), to predict the risk of CMV disease in lung transplant recipients. Methods We performed CMV immunity assays on 32 lung transplant recipients at risk of CMV disease as defined by serostatus (CMV-seropositive recipients, n = 26; or CMV-seronegative lung transplant recipient receiving a CMV-seropositive donor organ, n = 6). QFN-CMV and T-Track were performed on peripheral blood mononuclear cells, and episodes of CMV replication in both serum and bronchoalveolar lavage were found to be correlated to the CMV immune assays. The predictive ability of the assays was determined using Kaplan-Meier curves. Results There was a degree of concordance between tests, with 44% of recipients positive for both tests and 28% negative for both tests; however, test results were discordant in 28% of cases. A negative result in either the QFN-CMV (P < 0.01) or T-Track (P < 0.05) assays was obtained in a significantly higher number of recipients who experienced CMV replication in the blood. Using these assays together gave higher predictability of CMV replication, with only 1 recipient experiencing CMV replication in the blood who obtained a positive test result for both assays. Neither assay was able to predict recipients who experienced CMV replication in the lung allograft. Conclusions Our study demonstrates that CMV immunity assays can predict viremia; however, the lack of association with allograft infection suggests that CMV-specific T-cell immunity in the circulation is not associated with the control of CMV replication within the transplanted lung allograft.
Collapse
Affiliation(s)
- Jenny Li
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Vic, Australia
| | | | - Sanda Stankovic
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Vic, Australia
| | - Clare V. L. Oates
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Vic, Australia
| | - Yvonne Cristiano
- Lung Transplant Service, The Alfred Hospital, Melbourne, Vic, Australia
| | - Bronwyn J. Levvey
- Lung Transplant Service, The Alfred Hospital, Melbourne, Vic, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Vic, Australia
| | - Gregory I. Snell
- Lung Transplant Service, The Alfred Hospital, Melbourne, Vic, Australia
| | - Glen P. Westall
- Lung Transplant Service, The Alfred Hospital, Melbourne, Vic, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Vic, Australia
- Lung Transplant Service, The Alfred Hospital, Melbourne, Vic, Australia
| |
Collapse
|
3
|
Solidoro P, Patrucco F, Libertucci D, Verri G, Sidoti F, Curtoni A, Boffini M, Simonato E, Rinaldi M, Cavallo R, Costa C. Tailored combined cytomegalovirus management in lung transplantation: a retrospective analysis. Ther Adv Respir Dis 2020; 13:1753466619878555. [PMID: 31566097 PMCID: PMC6769221 DOI: 10.1177/1753466619878555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is no univocal prophylactic regimen to prevent cytomegalovirus (CMV) infection/disease in lung transplantation (LT) recipients. The aim of this study is to evaluate short-term clinical outcomes of a tailored combined CMV management approach. METHODS After 1-year follow up, 43 LT patients receiving combined CMV prophylaxis with antiviral agents and CMV-specific IgG were evaluated in a retrospective observational study. Systemic and lung viral infections were investigated by molecular methods on a total of 1134 whole blood and 167 bronchoalveolar lavage (BAL) and biopsy specimens. CMV immunity was assessed by ELISPOT assay. Clinical and therapeutic data were also evaluated. RESULTS We found 2/167 cases of CMV pneumonia (1.2%), both in the donor-positive/recipient-positive (D+/R+) population, and 51/167 cases of CMV pulmonary infection (BAL positivity 30.5%). However, only 32/167 patients (19.1%) were treated due to their weak immunological response at CMV ELISPOT assay. Viremia ⩾100,000 copies/mL occurred in 33/1134 specimens (2.9%). Regarding CMV-serological matching (D/R), the D+/R- population had more CMV viremia episodes (p < 0.05) and fewer viremia-free days (p < 0.001). CONCLUSIONS Compared to previous findings, our study shows a lower incidence of CMV pneumonia and viremia despite the presence of a substantial CMV load. In addition, our findings further confirm the D+/R- group to be a high-risk population for CMV viremia. Overall, a good immunological response seems to protect patients from CMV viremia and pneumonia but not from CMV alveolar replication. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Paolo Solidoro
- Cardiovascular and Thoracic Department, Division of Respiratory Diseases, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Filippo Patrucco
- Cardiovascular and Thoracic Department, Division of Respiratory Diseases, University of Turin, Città della Salute e della Scienza di Torino, C.so Bramante 88/90, Torino, 10126, Italy
| | - Daniela Libertucci
- Cardiovascular and Thoracic Department, Division of Respiratory Diseases, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giulia Verri
- Cardiovascular and Thoracic Department, Division of Respiratory Diseases, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Sidoti
- Public Health and Pediatrics Department, Division of Virology, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Curtoni
- Public Health and Pediatrics Department, Division of Virology, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Massimo Boffini
- Cardiovascular and Thoracic Department, Division of Cardiac Surgery, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Erika Simonato
- Cardiovascular and Thoracic Department, Division of Cardiac Surgery, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mauro Rinaldi
- Cardiovascular and Thoracic Department, Division of Cardiac Surgery, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Rossana Cavallo
- Public Health and Pediatrics Department, Division of Virology, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Costa
- Public Health and Pediatrics Department, Division of Virology, University of Turin, Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
4
|
Mullane KM. Human Cytomegalovirus Prophylaxis and Treatment in Lung Transplantation in the Current Era. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
El Haddad L, Ariza-Heredia E, Shah DP, Jiang Y, Blanchard T, Ghantoji SS, El Chaer F, El-Haddad D, Prayag A, Nesher L, Rezvani K, Shpall E, Chemaly RF. The Ability of a Cytomegalovirus ELISPOT Assay to Predict Outcome of Low-Level CMV Reactivation in Hematopoietic Cell Transplant Recipients. J Infect Dis 2020; 219:898-907. [PMID: 30295846 DOI: 10.1093/infdis/jiy592] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infections in hematopoietic cell transplant (HCT) recipients cause substantial morbidity and mortality. CMV cell-mediated immunity (CMV-CMI) can be determined by levels of interferon gamma (IFN-γ) production using an enzyme-linked immunospot (ELISPOT) CMV assay (T-SPOT.CMV assay). In this study, we evaluated the ability of this assay to predict the outcome of low-level CMV reactivation in HCT recipients. METHODS We followed 55 HCT recipients with low-level CMV reactivation up to 8 weeks from enrollment. Progression to clinically significant CMV infection (CS-CMVi) was defined as a CMV load >1000 IU/mL or > 500 IU/mL in patients receiving matched related/autologous or matched unrelated transplants, respectively, and initiation of antiviral treatment. RESULTS Progression to CS-CMVi occurred in 31 (56%) of the HCT recipients. Spot counts of CMV-specific pp65 and IE1 antigens were significantly lower in patients who had CS-CMVi than in patients who did not. On multivariate analysis, the ELISPOT CMV responses and steroids use were the only predictors of progression to CS-CMVi. CONCLUSIONS A strong association between low CMV-CMI and progression to CS-CMVi was observed in HCT recipients. The implementation of serial monitoring of CMV-CMI may identify patients at risk of progression to CS-CMVi that require antiviral therapy.
Collapse
Affiliation(s)
- Lynn El Haddad
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Ella Ariza-Heredia
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Dimpy P Shah
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Ying Jiang
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Ted Blanchard
- Oxford Immunotec Incorporation, Marlborough, Massachusetts
| | - Shashank S Ghantoji
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Firas El Chaer
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Danielle El-Haddad
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Amrita Prayag
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Lior Nesher
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
6
|
Potena L, Solidoro P, Patrucco F, Borgese L. Treatment and prevention of cytomegalovirus infection in heart and lung transplantation: an update. Expert Opin Pharmacother 2016; 17:1611-22. [PMID: 27340928 DOI: 10.1080/14656566.2016.1199684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Heart and lung transplantation are standard therapeutic strategies to improve survival and quality of life in selected patients with end-stage heart or lung diseases. Cytomegalovirus (CMV) is one the most clinically relevant and frequent post-transplant infectious agents, which may cause direct acute syndromes, and chronic indirect graft-related injury. Despite effective antiviral drugs being available to prevent and treat CMV infection, due to the immunosuppression burden and the specific characteristics of thoracic grafts, CMV infection remains a major clinical problem in heart and lung transplant recipients. AREAS COVERED We performed an extensive literature search focused on studies specifically including heart or lung transplantation, when available, or kidney transplant recipients when data on thoracic transplants were not available. We discuss the pros and cons supporting the use of currently available drugs and strategies for CMV prevention and treatment, highlighting current unmet needs. EXPERT OPINION While (Val)Ganciclovir remains the cornerstone of anti-CMV therapy, prolonged universal prophylaxis may expose a large number of patients to an excess of drug toxicity. Additional drugs with lower toxicity may be available in the context of anti-CMV prophylaxis, and effective CMV-risk stratification, by means of novel immune monitoring assays, which may help to customize the therapeutic approach.
Collapse
Affiliation(s)
- Luciano Potena
- a Heart and Lung Transplant Program, Academic Hospital S. Orsola-Malpighi , Bologna University , Bologna , Italy
| | - Paolo Solidoro
- b Lung Transplant Center, Cardiovascular Thoracic Department , A.O.U. Città della Salute e della Scienza di Torino , Turin , Italy
| | - Filippo Patrucco
- b Lung Transplant Center, Cardiovascular Thoracic Department , A.O.U. Città della Salute e della Scienza di Torino , Turin , Italy
| | - Laura Borgese
- a Heart and Lung Transplant Program, Academic Hospital S. Orsola-Malpighi , Bologna University , Bologna , Italy
| |
Collapse
|
7
|
Everolimus-based immunosuppressive regimens in lung transplant recipients: Impact on CMV infection. Antiviral Res 2015; 113:19-26. [DOI: 10.1016/j.antiviral.2014.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 11/21/2022]
|
8
|
Costa C, Balloco C, Sidoti F, Mantovani S, Rittà M, Piceghello A, Fop F, Messina M, Cavallo R. Evaluation of CMV-specific cellular immune response by EliSPOT assay in kidney transplant patients. J Clin Virol 2014; 61:523-8. [DOI: 10.1016/j.jcv.2014.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 01/04/2023]
|
9
|
Optimization of interferon gamma ELISPOT assay to detect human cytomegalovirus specific T-cell responses in solid organ transplants. J Virol Methods 2014; 196:157-62. [DOI: 10.1016/j.jviromet.2013.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
|
10
|
Solidoro P, Costa C, Libertucci D, Sidoti F, Boffini M, Ricci D, Delsedime L, Cavallo R, Baldi S, Rinaldi M. Tailored Cytomegalovirus Management in Lung transplant Recipient: A Single-Center Experience. Transplant Proc 2013; 45:2736-40. [DOI: 10.1016/j.transproceed.2013.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Comparison of cytomegalovirus (CMV) enzyme-linked immunosorbent spot and CMV quantiferon gamma interferon-releasing assays in assessing risk of CMV infection in kidney transplant recipients. J Clin Microbiol 2013; 51:2501-7. [PMID: 23678073 DOI: 10.1128/jcm.00563-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assessing cytomegalovirus (CMV)-specific cell-mediated immunity (CMI) represents an appealing strategy for identifying transplant recipients at risk of infection. In this study, we compared two gamma interferon-releasing assays (IGRAs), Quantiferon-CMV and CMV enzyme-linked immunosorbent spot (ELISPOT), to determine the ability of each test to predict protective CMV-specific T-cell responses. Two hundred twenty-one Quantiferon-CMV and ELISPOT tests were conducted on 120 adult kidney transplant recipients (KTRs), including 100 CMV-seropositive transplant recipients (R+) and 20 CMV-seronegative transplant recipients of a CMV-positive donor (D+/R-). As a control cohort, 39 healthy adult subjects (including 33 CMV-seropositive and 6 CMV-seronegative subjects) were enrolled. CMV IgG serology was used as a reference for both tests. In the CMV-seropositive individuals, the ELISPOT and Quantiferon-CMV assays provided 46% concordance with the serology, 12% discordance, 18% disagreement between ELISPOT or Quantiferon-CMV and the serology, and 24% gray areas when one or both tests resulted in weak positives. None of the CMV-seronegative subjects showed detectable responses in the ELISPOT or the Quantiferon-CMV test. In transplant recipients, both the ELISPOT and Quantiferon-CMV assays positively correlated with each other and negatively correlated with CMV DNAemia in a significant way (P<0.05). During the antiviral prophylaxis, all 20 D+/R- KTRs we examined displayed undetectable Quantiferon-CMV and ELISPOT results, and there was no evidence of CMV seroconversion. The receiving operator curve (ROC) statistical analysis revealed similar specificities and sensitivities in predicting detectable viremia (areas under the curve [AUC], 0.66 and 0.62 for Quantiferon-CMV and ELISPOT, respectively). ELISPOT and Quantiferon-CMV values of >150 spots/200,000 peripheral blood mononuclear cells (PBMCs) and >1 to 6 IU gamma interferon (IFN-γ) were associated with protection from CMV infection (odds ratios [OR], 5 and 8.75, respectively). In transplant recipients, the two tests displayed similar abilities for predicting CMV infection. Both the ELISPOT and Quantiferon-CMV assays require several ameliorations to avoid false-negative results.
Collapse
|