1
|
Wzorek-Łyczko K, Woźniak W, Piwowarczyk A, Kuchar E. The anti-infective effect of β-glucans in children. INT J VITAM NUTR RES 2024; 94:296-307. [PMID: 37779363 DOI: 10.1024/0300-9831/a000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background: β-glucans are bioactive β-D-glucose polysaccharides of natural origin, presenting antimicrobial and immunomodulation properties, with a low risk of toxicity. Objectives: This scoping review aims to present the current knowledge on the anti-infective properties of β-glucans in the pediatric population. Methods: We used the PRISMA Extension for Scoping Reviews Checklist to prepare this review. Studies were identified by electronic searches of Pubmed, Embase, and Cochrane databases up to May 2021. Results: The primary search allowed us to find 6232 studies, twelve of which were finally included in the analysis. Eight studies were designed as randomized, placebo-controlled trials, while in four studies the intervention outcome was compared with the pre-intervention period in the same group. The type of preparation and doses varied between studies: in five trials pleuran was administered (in dose 10 mg/5 kg of body weight/day), and in one study baker's yeast β-glucan was used (in two doses: 35 mg/day and 75 mg/day). In six other studies, the analyzed preparation comprised β-glucan and other substances. The shortest study lasted seven days, while the most prolonged intervention lasted six months, followed by six months of follow-up. Ten out of twelve trials demonstrated the effectiveness of β-glucans in reducing respiratory tract infection incidence or alleviation of upper respiratory tract infection symptoms. Ten out of twelve studies have reported a good tolerance and safety profile. Conclusions: Good tolerance of β-glucans shows a favorable benefit-risk ratio of this type of intervention. Nevertheless, further monitoring of their efficacy and safety in high-quality research is necessary.
Collapse
Affiliation(s)
- Katarzyna Wzorek-Łyczko
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Weronika Woźniak
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Anna Piwowarczyk
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Ernest Kuchar
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| |
Collapse
|
2
|
Hsu FY, Yang SC, Suk FM, Shirakawa H, Chiu WC, Liao YJ. Dietary rice bran attenuates hepatic stellate cell activation and liver fibrosis in mice through enhancing antioxidant ability. J Nutr Biochem 2024; 125:109565. [PMID: 38176621 DOI: 10.1016/j.jnutbio.2023.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/07/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Various endogenous and exogenous stimuli can result in an inflammatory response and collagen deposition in the liver, which affect liver function and increase the risk of developing liver cirrhosis and cancer. Rice bran, the main by-product of rice milling, contains various nutrients which possess hepatoprotective activities. In this study, we investigated the effects of rice bran on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Mice were fed a rice-bran-containing diet (10% rice bran w/w) or a standard diet with or without an injection of 20% CCl4 to induce liver fibrosis. Our results showed that feeding a rice-bran-containing diet could alleviate CCl4-induced liver damage, collagen deposition, and expressions of fibrosis-related genes, including α-smooth muscle actin (α-SMA), collagen 1a2 (COL1A2), and transforming growth factor-β (TGF-β) in liver tissues. Moreover, consumption of rice bran enhanced phase II detoxification and antioxidant gene expressions, including Gsta3, Gstp1, Catalase, SOD1, SOD2, and SOD3. Treatment with γ-oryzanol, the major bioactive compound in rice bran, decreased the sensitivity of hepatic stellate cells (HSCs) to TGF-β1-induced α-SMA, COL1A2, and phosphorylated smad2 expressions. In conclusion, a rice-bran-containing diet may have beneficial effects on liver fibrogenesis through increased antioxidant and detoxification activities. γ-Oryzanol, the major bioactive compound of rice bran, can inhibit activation of HSCs.
Collapse
Affiliation(s)
- Fang-Yu Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Kenawy ER, El-Moaty MSA, Ghoneum M, Soliman HMA, El-Shanshory AA, Shendy S. Biobran-loaded core/shell nanofibrous scaffold: a promising wound dressing candidate. RSC Adv 2024; 14:4930-4945. [PMID: 38327812 PMCID: PMC10848241 DOI: 10.1039/d3ra08609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
This research examined the effectiveness of Biobran as a bioactive substance that could potentially improve wound healing. It also looked at how Biobran affects the properties of a nanofibrous scaffold made through coaxial electrospinning. This is the first study exploring the use of Biobran in this context and its interaction with nanofibrous scaffolds. The scaffolds were composed of poly(ε-caprolactone) (PCL) in the shell and various concentrations of Biobran blended with polyvinyl alcohol (PVA) in the core. The properties of the scaffolds were characterized by SEM, TEM, FTIR, XRD, TGA, DSC, stress-strain test, WCA, release test, MTT cytotoxicity assay, wound scratching assay, and the dye exclusion method using trypan blue. The scaffolds loaded with Biobran exhibited a more compact and smooth morphology compared with the scaffold without Biobran. The physical interaction and crystallinity of the polymers in the scaffolds were also affected by Biobran in a concentration-dependent manner. This positively influenced their tensile strength, elongation at break, thermal stability, and hydrophilicity. The porosity, water uptake capacity, and WVTR of the nanofibrous scaffolds are within the optimal ranges for wound healing. The release rate of Biobran, which revealed a biphasic release pattern, decreased with increasing Biobran concentration, resulting in controlled and sustained delivery of Biobran from the nanofiber scaffolds. The cell viability assays showed a dose-dependent effect of Biobran on WISH cells, which might be attributed to the positive effect of Biobran on the physicochemical properties of the nanofibrous scaffolds. These findings suggest that Biobran-loaded core/shell nanofiber scaffolds have a potential application in wound healing as an ideal multifunctional wound dressing.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mohammed S A El-Moaty
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science 1731 E. 120th Street Los Angeles CA 90059 USA
- Department of Surgery, University of California Los Angeles Los Angeles CA 90095 USA
| | - Hesham M A Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ahmed A El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - S Shendy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
4
|
Noormohammadi M, Ghorbani Z, Shahinfar H, Shidfar F. Is there any hepatic impact associated with rice bran arabinoxylan compound supplementation? A systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2023; 57:665-675. [PMID: 37739721 DOI: 10.1016/j.clnesp.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Rice Bran Arabinoxylan Compound (RBAC) results from an enzymatic modification of rice bran, which is reported to have immunomodulatory, anti-oxidant, and anti-inflammatory effects by regulating the production of pro-inflammatory cytokines. The current systematic review and meta-analysis aimed to determine the hepatic adverse effects of RBAC by assessing the effect through liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST). METHODS In the present study, the Medline (PubMed), Web of Sciences, and Scopus databases were searched for relevant publications from the beginning to October 2022. The meta-analysis was based on the Mixed effect model to generate the mean effect sizes in weighted mean differences (WMD) and the 95% confidence intervals (95%CI). The heterogeneity was assessed using the Cochrane Chi-squared test, and the analysis of Galbraith plots was applied. RESULTS Subgroup meta-analysis on five eligible randomized controlled trials (n = 239) showed a significant decrease in serum AST regarding RBAC supplementation in powder form (WMD (95%CI) = -3.52 (-5.62, -1.42) U/L; P-value = 0.001, I2 (%) = 46.9; P heterogeneity = 0.170), three months and more supplementation duration (WMD (95%CI) = -3.71 (-5.95, -1.48) U/L; P-value = 0.001, I2 (%) = 29.9; P heterogeneity = 0.240) and studies with a good quality (WMD (95%CI) = -3.52 (-5.62, -1.42) U/L; P-value = 0.001, I2 (%) = 46.9; P heterogeneity = 0.170). CONCLUSIONS In conclusion, RBAC supplementation seems to not have any hepatic adverse effects and its supplementation as powder or for three months and more may decrease serum AST levels. However, we need further studies to confirm the results. REGISTRY NUMBER FOR SYSTEMATIC REVIEWS OR META-ANALYZES CRD42022361002, registration time: 29/09/2022.
Collapse
Affiliation(s)
- Morvarid Noormohammadi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hossein Shahinfar
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ooi SL, Micalos PS, Pak SC. Modified rice bran arabinoxylan as a nutraceutical in health and disease-A scoping review with bibliometric analysis. PLoS One 2023; 18:e0290314. [PMID: 37651416 PMCID: PMC10470915 DOI: 10.1371/journal.pone.0290314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Rice bran arabinoxylan compound (RBAC) is a polysaccharide modified by Lentinus edodes mycelial enzyme widely used as a nutraceutical. To explore translational research on RBAC, a scoping review was conducted to synthesise research evidence from English (MEDLINE, ProQuest, CENTRAL, Emcare, CINAHL+, Web of Science), Japanese (CiNii, J-Stage), Korean (KCI, RISS, ScienceON), and Chinese (CNKI, Wanfang) sources while combining bibliometrics and network analyses for data visualisation. Searches were conducted between September and October 2022. Ninety-eight articles on RBAC and the biological activities related to human health or disease were included. Research progressed with linear growth (median = 3/year) from 1998 to 2022, predominantly on Biobran MGN-3 (86.73%) and contributed by 289 authors from 100 institutions across 18 countries. Clinical studies constitute 61.1% of recent articles (2018 to 2022). Over 50% of the research was from the USA (29/98, 29.59%) and Japan (22/98, 22.45%). A shifting focus from immuno-cellular activities to human translations over the years was shown via keyword visualisation. Beneficial effects of RBAC include immunomodulation, synergistic anticancer properties, hepatoprotection, antiinflammation, and antioxidation. As an oral supplement taken as an adjuvant during chemoradiotherapy, cancer patients reported reduced side effects and improved quality of life in human studies, indicating RBAC's impact on the psycho-neuro-immune axis. RBAC has been studied in 17 conditions, including cancer, liver diseases, HIV, allergy, chronic fatigue, gastroenteritis, cold/flu, diabetes, and in healthy participants. Further translational research on the impact on patient and community health is required for the evidence-informed use of RBAC in health and disease.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Peter S. Micalos
- School of Dentistry and Medical Sciences, Charles Sturt University, Port Macquarie, New South Wales Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| |
Collapse
|
6
|
Biobran/MGN-3, an Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study. Nutrients 2023; 15:nu15020453. [PMID: 36678324 PMCID: PMC9866808 DOI: 10.3390/nu15020453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), poses a serious global public health threat for which there is currently no satisfactory treatment. This study examines the efficacy of Biobran/MGN-3 against SARS-CoV-2. Biobran is an arabinoxylan rice bran that has been shown to significantly inhibit the related influenza virus in geriatric subjects. Here, Biobran's anti-SARS-CoV-2 activity was assessed using MTT and plaque reduction assays, RT-PCR, ELISA techniques, and measurements of SARS-CoV-2-related gene expression and protein levels. For Vero E6 cells infected with SARS-CoV-2, Biobran reduced the viral load by 91.9% at a dose of 100 μg/mL, it reduced viral counts (PFU/mL) by 90.6% at 50 μg/mL, and it exhibited a significant selectivity index (EC50/IC50) of 22.5. In addition, Biobran at 10 μg/mL inhibited papain-like proteinase (PLpro) by 87% and ACE2 SARS-CoV-2 S-protein RBD by 90.5%, and it significantly suppressed SARS-CoV-2 gene expression, down-regulating E-gene and RdRp gene expression by 93% each at a dose of 50 μg/mL and inhibiting the E-protein by 91.3%. An in silico docking study was also performed to examine the protein-protein interaction (PPI) between SARS-CoV-2 RBD and DC-SIGN as well as between serine carboxypeptidase and papain-like protease PLpro. Serine carboxypeptidase, an active ingredient in Biobran, was found to interfere with the binding of SARS-CoV-2 to its receptor DC-SIGN on Vero cells, thus preventing the cell entry of SARS-CoV-2. In addition, it impairs the viral replication cycle by binding to PLpro. We conclude that Biobran possesses potent antiviral activity against SARS-CoV-2 in vitro and suggest that Biobran may be able to prevent SARS-CoV-2 infection. This warrants further investigation in clinical trials.
Collapse
|
7
|
Elsaid AF, Agrawal S, Agrawal A, Ghoneum M. Dietary Supplementation with Biobran/MGN-3 Increases Innate Resistance and Reduces the Incidence of Influenza-like Illnesses in Elderly Subjects: A Randomized, Double-Blind, Placebo-Controlled Pilot Clinical Trial. Nutrients 2021; 13:nu13114133. [PMID: 34836388 PMCID: PMC8618540 DOI: 10.3390/nu13114133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza-like illness (ILI) remains a major cause of severe mortality and morbidity in the elderly. Aging is associated with a decreased ability to sense pathogens and mount effective innate and adaptive immune responses, thus mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent anti-aging and immunomodulatory effects, suggesting that it may be effective against ILI. The objective of the current study was to investigate the effect of Biobran/MGN-3 on ILI incidence, natural killer (NK) cell activity, and the expressions of RIG-1 (retinoic acid-inducible gene 1), MDA5 (melanoma differentiation-associated protein 5), and their downstream signaling genes ISG-15 (interferon-stimulated genes 15) and MX1 (myxovirus (influenza) resistance 1, interferon-inducible). A double-blind, placebo-controlled clinical trial included eighty healthy older adults over 55 years old, 40 males and 40 females, who received either a placebo or Biobran/MGN-3 (500 mg/day) for 3 months during known ILI seasonality (peak incidence) in Egypt. The incidence of ILI was confirmed clinically according to the WHO case definition criteria. Hematological, hepatic, and renal parameters were assessed in all subjects, while the activity of NK and NKT (natural killer T) cells was assessed in six randomly chosen subjects in each group by the degranulation assay. The effect of Biobran/MGN-3 on RIG-1 and MDA5, as well as downstream ISG15 and MX1, was assessed in BEAS-2B pulmonary epithelial cells using flow cytometry. The incidence rate and incidence density of ILI in the Biobran/MGN-3 group were 5.0% and 0.57 cases per 1000 person-days, respectively, compared to 22.5% and 2.95 cases per 1000 person-days in the placebo group. Furthermore, Biobran/MGN-3 ingestion significantly enhanced NK activity compared to the basal levels and to the placebo group. In addition, Biobran/MGN-3 significantly upregulated the expression levels of RIG-1, MDA5, ISG15, and MX1 in the human pulmonary epithelial BEAS-2B cell lines. No side effects were observed. Taken together, Biobran/MGN-3 supplementation enhanced the innate immune response of elderly subjects by upregulating the NK activity associated with reduction of ILI incidence. It also upregulated the intracellular RIG-1, MDA5, ISG15, and MX1 expression in pulmonary epithelial tissue cultures. Biobran/MGN-3 could be a novel agent with prophylactic effects against a wide spectrum of respiratory viral infections that warrants further investigation.
Collapse
Affiliation(s)
- Ahmed F. Elsaid
- Department of Community Medicine and Public Health, Zagazig University, Zagazig 44519, Egypt
- Correspondence: or
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| |
Collapse
|
8
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
9
|
The Health-Promoting Properties and Clinical Applications of Rice Bran Arabinoxylan Modified with Shiitake Mushroom Enzyme-A Narrative Review. Molecules 2021; 26:molecules26092539. [PMID: 33925340 PMCID: PMC8123671 DOI: 10.3390/molecules26092539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 01/11/2023] Open
Abstract
Rice bran arabinoxylan compound (RBAC) is derived from defatted rice bran hydrolyzed with Lentinus edodes mycelial enzyme. It has been marketed as a functional food and a nutraceutical with health-promoting properties. Some research has demonstrated this rice bran derivative to be a potent immunomodulator, which also possesses anti-inflammatory, antioxidant, and anti-angiogenic properties. To date, research on RBAC has predominantly focused on its immunomodulatory action and application as a complementary therapy for cancer. Nonetheless, the clinical applications of RBAC can extend beyond cancer therapy. This article is a narrative review of the research on the potential benefits of RBAC for cancer and other health conditions based on the available literature. RBAC research has shown it to be useful as a complementary treatment for cancer and human immunodeficiency virus infection. It can positively modulate serum glucose, lipid and protein metabolism in diabetic patients. Additionally, RBAC has been shown to ameliorate irritable bowel syndrome and protect against liver injury caused by hepatitis or nonalcoholic fatty liver disease. It can potentially ease symptoms in chronic fatigue syndrome and prevent the common cold. RBAC is safe to consume and has no known side effects at the typical dosage of 2–3 g/day. Nevertheless, further research in both basic studies and human clinical trials are required to investigate the clinical applications, mechanisms, and effects of RBAC.
Collapse
|
10
|
Protective Effect of Biobran/MGN-3 against Sporadic Alzheimer's Disease Mouse Model: Possible Role of Oxidative Stress and Apoptotic Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8845064. [PMID: 33574982 PMCID: PMC7857904 DOI: 10.1155/2021/8845064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a debilitating and irreversible brain disease that affects an increasing number of aged individuals, mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent antioxidant, antiaging, and immunomodulatory effects. The aim of the present study was to investigate the protective effect of Biobran against sporadic Alzheimer's disease (SAD). SAD was induced in mice via intracerebroventricular injection of streptozotocin (STZ) (3 mg/kg). STZ-treated mice were administered with Biobran for 21 days. The effects of Biobran on memory and learning were measured via the Morris water maze, novel object recognition, and Y-maze tests. Biomarkers for apoptosis, oxidative stress, and amyloidogenesis were measured using ELISA and western blot analysis. Histopathological examination was performed to confirm neuronal damage and amyloid-beta deposition. Biobran reversed the spatial memory deficit in SAD-induced mice, and it increased the expression of glutathione, reduced malondialdehyde, decreased IL-6, decreased intercellular adhesion molecule-1 (ICAM-1), and significantly increased nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE). Moreover, Biobran exerted a protective effect against amyloid-beta-induced apoptosis via the suppression of both cleaved caspase-3 and the proapoptotic protein Bax and via the upregulation of the antiapoptotic protein Bcl-2. Furthermore, it reduced the expression of forkhead box class O proteins. It could be concluded from this study that Biobran may be a useful nutritional antioxidant agent for protection against SAD through its activation of the gene expression of Nrf2/ARE, which in turn modulates the apoptotic and amyloidogenic pathways.
Collapse
|
11
|
Spaggiari M, Dall’Asta C, Galaverna G, del Castillo Bilbao MD. Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives. Foods 2021; 10:E85. [PMID: 33406743 PMCID: PMC7824317 DOI: 10.3390/foods10010085] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study is to review the innovative techniques based on bioprocessing, thermal or physical treatments which have been proposed during the last few decades to convert rice bran into a valuable food ingredient. Rice bran (Oryza sativa) is the main by-product of rice grain processing. It is produced in large quantities worldwide and it contains a high amount of valuable nutrients and bioactive compounds with significant health-related properties. Despite that, its application in food industry is still scarce because of its sensitivity to oxidation processes, instability and poor technological suitability. Furthermore, the health-related effects of pretreated rice bran are also presented in this review, considering the up-to-date literature focused on both in vivo and in vitro studies. Moreover, in relation to this aspect, a brief description of rice bran arabinoxylans is provided. Finally, the application of rice bran in the food industry and the main technology aspects are concisely summarized.
Collapse
Affiliation(s)
- Marco Spaggiari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy; (M.S.); (C.D.); (G.G.)
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy; (M.S.); (C.D.); (G.G.)
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy; (M.S.); (C.D.); (G.G.)
| | - María Dolores del Castillo Bilbao
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
12
|
Elsaid AF, Shaheen M, Ghoneum M. Biobran/MGN-3, an arabinoxylan rice bran, enhances NK cell activity in geriatric subjects: A randomized, double-blind, placebo-controlled clinical trial. Exp Ther Med 2018; 15:2313-2320. [PMID: 29456638 PMCID: PMC5795547 DOI: 10.3892/etm.2018.5713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Aging is associated with a decline in natural killer (NK) and natural killer T (NKT) cell function that may contribute to increased susceptibility to malignancy and infection. A preliminary investigation was conducted examining the hypothesis that arabinoxylan rice bran (Biobran/MGN-3), a denatured hemicellulose with known immunomodulatory activity, could counteract this decline in NK/NKT cell activity in geriatrics. A total of 12 healthy geriatric subjects of both sexes and over 56 years old, participated in a randomized, double-blind, placebo-controlled clinical trial. A total of six subjects served as control and six subjects ingested Biobran/MGN-3 (500 mg/day) for 30 days. The effect of Biobran/MGN-3 supplementation on NK/NKT cell activity was assessed using the degranulation assay. All study subjects were monitored for the development of any inadvertent side effects. In addition, the pharmacological effects of Biobran/MGN-3 on blood cell components and liver and kidney functions were also assessed. Results demonstrated that Biobran/MGN-3 had no effect on the total percentage of NK cells, however it enhanced the cytotoxic activity of induced NK cell expression of cluster of differentiation 107a, when compared with baseline values and with the placebo group (P<0.05). Furthermore, there were no side effects observed, indicating that Biobran/MGN-3 supplementation was safe at the utilized dosage and for the duration of administration. Various additional beneficial effects were observed, including improved mean corpuscular volume and reduced hepatic aspartate aminotransferase enzyme levels, which suggested improved liver function. It was concluded that Biobran/MGN-3 induces a significant increase in NK activity which may increase resistance to viral infections and cancers in the geriatric population. However, additional clinical trials should be conducted in the future to verify these findings.
Collapse
Affiliation(s)
- Ahmed F. Elsaid
- Department of Community Medicine and Public Health, Faculty of Medicine, Zagazig University, Zagazig, Al Sharqia 44519, Egypt
| | - Magda Shaheen
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
13
|
Fadel A, Mahmoud AM, Ashworth JJ, Li W, Ng YL, Plunkett A. Health-related effects and improving extractability of cereal arabinoxylans. Int J Biol Macromol 2017; 109:819-831. [PMID: 29133103 DOI: 10.1016/j.ijbiomac.2017.11.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 02/08/2023]
Abstract
Arabinoxylans (AXs) are major dietary fibers. They are composed of backbone chains of β-(1-4)-linked xylose residues to which α-l-arabinose are linked in the second and/or third carbon positions. Recently, AXs have attracted a great deal of attention because of their biological activities such as their immunomodulatory potential. Extraction of AXs has some difficulties; therefore, various methods have been used to increase the extractability of AXs with varying degrees of success, such as alkaline, enzymatic, mechanical extraction. However, some of these treatments have been reported to be either expensive, such as enzymatic treatments, or produce hazardous wastes and are non-environmentally friendly, such as alkaline treatments. On the other hand, mechanical assisted extraction, especially extrusion cooking, is an innovative pre-treatment that has been used to increase the solubility of AXs. The aim of the current review article is to point out the health-related effects and to discuss the current research on the extraction methods of AXs.
Collapse
Affiliation(s)
- Abdulmannan Fadel
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt; Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Germany; Department of Endocrinology, Diabetes and Nutrition at the Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Germany.
| | - Jason J Ashworth
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Weili Li
- Institute of Food Science & Innovation, University of Chester, Chester, United Kingdom
| | - Yu Lam Ng
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Plunkett
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|