1
|
Wei B, Yang Z, Guo H, Wang Y, Chen W, Zhou J, Jin R, Wang Z, Tang Y. Design, synthesis, and biological evaluation of evodiamine-indolequinone hybrids as novel NQO1 agonists against non-small cell lung cancer. ARAB J CHEM 2025; 18:106075. [DOI: 10.1016/j.arabjc.2024.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
|
2
|
Lin L, Liu Y, Tang R, Ding S, Lin H, Li H. Evodiamine: A Extremely Potential Drug Development Candidate of Alkaloids from Evodia rutaecarpa. Int J Nanomedicine 2024; 19:9843-9870. [PMID: 39345907 PMCID: PMC11430234 DOI: 10.2147/ijn.s459510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024] Open
Abstract
Evodiamine (EVO) is a tryptamine indole alkaloid and the main active ingredient in Evodia rutaecarpa. In recent years, the antitumor, cardioprotective, anti-inflammatory, and anti-Alzheimer's disease effects of EVO have been reported. EVO exerts antitumor effects by inhibiting tumor cell activity and proliferation, blocking the cell cycle, promoting apoptosis and autophagy, and inhibiting the formation of the tumor microvasculature. However, EVO has poor solubility and low bioavailability. Several derivatives with high antitumor activity have been discovered through the structural optimization of EVO, and new drug delivery systems have been developed to improve the solubility and bioavailability of EVO. Current research found that EVO could have toxic effects, such as hepatotoxicity, nephrotoxicity, and cardiac toxicity. This article reviews the pharmacological activity, derivatives, drug delivery systems, toxicity, and pharmacokinetics of EVO and provides research ideas and references for its further in-depth development and clinical applications.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yuling Liu
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruying Tang
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Shilan Ding
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Hongmei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
- National Medical Products Administration Key Laboratory for Research Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Li
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, People's Republic of China
| |
Collapse
|
3
|
Wang J, Liang Y, Liang X, Peng H, Wang Y, Xu M, Liang X, Yao H, Liu X, Zeng L, Yao P, Xiang D. Evodiamine suppresses endometriosis development induced by early EBV exposure through inhibition of ERβ. Front Pharmacol 2024; 15:1426660. [PMID: 39148548 PMCID: PMC11324466 DOI: 10.3389/fphar.2024.1426660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction: Endometriosis (EMS) is characterized as a prevalent gynecological inflammatory disorder marked by the existence of endometrial tissues situated beyond the uterus. This condition leads to persistent pelvic pain and may contribute to infertility. In this investigation, we explored the potential mechanism underlying the development of endometriosis (EMS) triggered by transient exposure to either latent membrane protein 1 (LMP1) or Epstein-Barr virus (EBV) in a mouse model. Additionally, we examined the potential inhibitory effect of evodiamine (EDM) on EMS. Methods: Immortalized human endometrial stromal cells (HESC) or epithelial cells (HEEC) were transiently exposed to either EBV or LMP1. The presence of evodiamine (EDM) was assessed for its impact on estrogen receptor β (ERβ) expression, as well as on cell metabolism parameters such as redox balance, mitochondrial function, inflammation, and proliferation. Additionally, a mixture of LMP1-treated HESC and HEEC was administered intraperitoneally to generate an EMS mouse model. Different dosages of EDM were employed for treatment to evaluate its potential suppressive effect on EMS development. Results: Transient exposure to either EBV or LMP1 triggers persistent ERβ expression through epigenetic modifications, subsequently modulating related cell metabolism for EMS development. Furthermore, 4.0 µM of EDM can efficiently reverse this effect in in vitro cell culture studies. Additionally, 20 mg/kg body weight of EDM treatment can partly suppress EMS development in the in vivo EMS mouse model. Conclusion: Transient EBV/LMP1 exposure triggers permanent ERβ expression, favoring later EMS development, EDM inhibits EMS development through ERβ suppression. This presents a novel mechanism for the development of endometriosis (EMS) in adulthood stemming from early Epstein-Barr virus (EBV) exposure during childhood. Moreover, evodiamine (EDM) stands out as a prospective candidate for treating EMS.
Collapse
Affiliation(s)
- Junling Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoru Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijuan Peng
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxia Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingtao Xu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Helen Yao
- University of California at Riverside, Riverside, CA, United States
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Paul Yao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfang Xiang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Yong X, Wang B, Wang M, Lyu H, Yin M, Jin T, Feng X, Shan Y, Liang Y, Wang Q. Comprehensive Analysis of 11 Species of Euodia (Rutaceae) by Untargeted LC-IT-TOF/MS Metabolomics and In Vitro Functional Methods. Molecules 2024; 29:1059. [PMID: 38474571 DOI: 10.3390/molecules29051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.
Collapse
Affiliation(s)
- Xuhong Yong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Mengdi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tong Jin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qizhi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Zhang JX, Yuan WC, Li CG, Zhang HY, Han SY, Li XH. A review on the mechanisms underlying the antitumor effects of natural products by targeting the endoplasmic reticulum stress apoptosis pathway. Front Pharmacol 2023; 14:1293130. [PMID: 38044941 PMCID: PMC10691277 DOI: 10.3389/fphar.2023.1293130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer poses a substantial risk to human life and wellbeing as a result of its elevated incidence and fatality rates. Endoplasmic reticulum stress (ERS) is an important pathway that regulates cellular homeostasis. When ERS is under- or overexpressed, it activates the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-, inositol-requiring enzyme 1 (IRE1)- and activating transcription Factor 6 (ATF6)-related apoptotic pathways to induce apoptosis. Tumor cells and microenvironment are susceptible to ERS, making the modulation of ERS a potential therapeutic approach for treating tumors. The use of natural products to treat tumors has substantially progressed, with various extracts demonstrating antitumor effects. Nevertheless, there are few reports on the effectiveness of natural products in inducing apoptosis by specifically targeting and regulating the ERS pathway. Further investigation and elaboration of its mechanism of action are still needed. This paper examines the antitumor mechanism of action by which natural products exert antitumor effects from the perspective of ERS regulation to provide a theoretical basis and new research directions for tumor therapy.
Collapse
Affiliation(s)
- Jie-Xiang Zhang
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei-Chen Yuan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- The College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Gang Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Yan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiao-Hong Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Xia F, Sun S, Xia L, Xu X, Hu G, Wang H, Chen X. Traditional Chinese medicine suppressed cancer progression by targeting endoplasmic reticulum stress responses: A review. Medicine (Baltimore) 2022; 101:e32394. [PMID: 36595834 PMCID: PMC9794298 DOI: 10.1097/md.0000000000032394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer has a high morbidity and mortality; therefore, it poses a major global health concern. Imbalance in endoplasmic reticulum homeostasis can induce endoplasmic reticulum stress (ERS). ERS has been shown to play both tumor-promoting and tumor-suppressive roles in various cancer types by activating a series of adaptive responses to promote tumor cell survival and inducing ERS-related apoptotic pathways to promote tumor cell death, inhibit tumor growth and suppress tumor invasion. Because multiple roles of ERS in tumors continue to be reported, many studies have attempted to target ERS in cancer therapy. The therapeutic effects of traditional Chinese medicine (TCM) treatments on tumors have been widely recognized. TCM treatments can enhance the sensitivity of tumor radiotherapy, delay tumor recurrence and improve patients' quality of life. However, there are relatively few reports exploring the antitumor effects of TCM from the perspective of ERS. This review addresses the progress of TCM intervention in tumors via ERS with a view to providing a new direction for tumor treatment.
Collapse
Affiliation(s)
- Fan Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Suling Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Li Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xiuli Xu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ge Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongzhi Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xueran Chen
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- * Correspondence: Xueran Chen, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (e-mail: )
| |
Collapse
|