1
|
Martínez‐Molina N, Siponkoski S, Särkämö T. Cognitive efficacy and neural mechanisms of music-based neurological rehabilitation for traumatic brain injury. Ann N Y Acad Sci 2022; 1515:20-32. [PMID: 35676218 PMCID: PMC9796942 DOI: 10.1111/nyas.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) causes lifelong cognitive deficits, most often in executive function (EF). Both musical training and music-based rehabilitation have been shown to enhance EF and neuroplasticity. Thus far, however, there is little evidence for the potential rehabilitative effects of music for TBI. Here, we review the core findings from our recent cross-over randomized controlled trial in which a 10-week music-based neurological rehabilitation (MBNR) protocol was administered to 40 patients with moderate-to-severe TBI. Neuropsychological testing and structural/functional magnetic resonance imaging were collected at three time points (baseline, 3 months, and 6 months); one group received the MBNR between time points 1 and 2, while a second group received it between time points 2 and 3. We found that both general EF and set shifting improved after the intervention, and this effect was maintained long term. Morphometric analyses revealed therapy-induced gray matter volume changes most consistently in the right inferior frontal gyrus, changes that correlated with better outcomes in set shifting. Finally, we found changes in the between- and within-network functional connectivity of large-scale resting-state networks after MBNR, which also correlated with measures of EF. Taken together, the data provide evidence for concluding that MBNR improves EF in TBI; also, the data show that morphometric and resting-state functional connectivity are sensitive markers with which to monitor the neuroplasticity induced by the MBNR intervention.
Collapse
Affiliation(s)
- Noelia Martínez‐Molina
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| | - Sini‐Tuuli Siponkoski
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| | - Teppo Särkämö
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Pierre K, Clark A, Felisma P, Weisman S, Lucke-Wold B. Neurologic Injury and Dementia: Update on Current Physiotherapeutic Intervention. ARCHIVES OF EMERGENCY MEDICINE AND CRITICAL CARE 2022; 6:1050. [PMID: 36468938 PMCID: PMC9717692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurologic injury and dementia can lead to devastating outcomes for patients with extended course of disease. Secondary and tertiary injury can progress and lead to continued deficits and rapid neurodegeneration. In this review, we highlight alternative strategies that can target recovery for these patients and prevent further neurologic decline. We discuss the benefit of music therapy and acupuncture. We then look at transcranlal magnetic stimulation and transcranial direct current stimulation. Finally, we look at the role of yoga and virtual reality. While several of these modalities are in their infancy, some have been used for generations. We argue for higher quality evidence to confirm effectiveness and clinical utility.
Collapse
Affiliation(s)
- Kevin Pierre
- Department of Neurosurgery, University of Florida, USA
| | - Alec Clark
- College of Medicine, University of Central Florida, USA
| | | | | | | |
Collapse
|
3
|
Mollica A, Dey A, Cairncross M, Silverberg N, Burke MJ. Neuropsychiatric Treatment for Mild Traumatic Brain Injury: Nonpharmacological Approaches. Semin Neurol 2022; 42:168-181. [PMID: 35114694 DOI: 10.1055/s-0041-1742143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postconcussive symptoms following mild traumatic brain injury (mTBI)/concussion are common, disabling, and challenging to manage. Patients can experience a range of symptoms (e.g., mood disturbance, headaches, insomnia, vestibular symptoms, and cognitive dysfunction), and neuropsychiatric management relies heavily on nonpharmacological and multidisciplinary approaches. This article presents an overview of current nonpharmacological strategies for postconcussive symptoms including psychoeducation; psychotherapy; vestibular, visual, and physical therapies; cognitive rehabilitation; as well as more novel approaches, such as neuromodulation. Ultimately, treatment and management of mTBI should begin early with appropriate psychoeducation/counseling, and be tailored based on core symptoms and individual goals.
Collapse
Affiliation(s)
- Adriano Mollica
- Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ayan Dey
- Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Molly Cairncross
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.,Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Noah Silverberg
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.,Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Matthew J Burke
- Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Braun Janzen T, Koshimori Y, Richard NM, Thaut MH. Rhythm and Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future Perspectives. Front Hum Neurosci 2022; 15:789467. [PMID: 35111007 PMCID: PMC8801707 DOI: 10.3389/fnhum.2021.789467] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Research in basic and clinical neuroscience of music conducted over the past decades has begun to uncover music’s high potential as a tool for rehabilitation. Advances in our understanding of how music engages parallel brain networks underpinning sensory and motor processes, arousal, reward, and affective regulation, have laid a sound neuroscientific foundation for the development of theory-driven music interventions that have been systematically tested in clinical settings. Of particular significance in the context of motor rehabilitation is the notion that musical rhythms can entrain movement patterns in patients with movement-related disorders, serving as a continuous time reference that can help regulate movement timing and pace. To date, a significant number of clinical and experimental studies have tested the application of rhythm- and music-based interventions to improve motor functions following central nervous injury and/or degeneration. The goal of this review is to appraise the current state of knowledge on the effectiveness of music and rhythm to modulate movement spatiotemporal patterns and restore motor function. By organizing and providing a critical appraisal of a large body of research, we hope to provide a revised framework for future research on the effectiveness of rhythm- and music-based interventions to restore and (re)train motor function.
Collapse
Affiliation(s)
- Thenille Braun Janzen
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Yuko Koshimori
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nicole M. Richard
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Faculty of Music, Belmont University, Nashville, TN, United States
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michael H. Thaut,
| |
Collapse
|