1
|
Traven L, Linšak Ž, Crvelin G, Baldigara A. Atmospheric parameters play an important role in driving hydrogen sulphide concentrations in ambient air near waste management centres. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1451. [PMID: 37947876 DOI: 10.1007/s10661-023-12047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Emissions of odorous compounds are major contributors to public opposition when siting waste management facilities. Thus, it is essential to understand how to minimise the concentration of odour-causing chemicals in ambient air surrounding such facilities. Although the concentration of pollutants in the atmosphere is a function of meteorology, there is limited data on the atmospheric parameters that drive ambient air concentrations of odour-causing substances in settlements near waste management facilities. Here, we analysed how temperature, wind direction, wind speed, atmospheric pressure and humidity impact the concentrations of hydrogen sulphide (H2S) in the ambient air, a potentially toxic chemical and a chief contributor to noxious odours. The relative contribution of each variable was assessed using multivariate statistical analysis applied to an extensive data set of over 7,000 data points collected during 2021. Our results show that all tested atmospheric parameters significantly affected H2S concentrations in ambient air. Wind direction had the greatest impact on H2S concentrations, followed by temperature, humidity, atmospheric pressure and wind speed. Specifically, the concentration of H2S was positively correlated with humidity and atmospheric pressure and had a U-shaped correlation with temperature. Atmospheric variables were able to explain 15% of variation in H2S concentrations (R2 = 15%), indicating the presence of other factors affecting H2S ambient air concentrations. Our study shows that proper consideration of atmospheric parameters, especially wind direction and temperatures, is of uttermost importance when siting waste management facilities. The conclusions are broadly applicable to odorous compounds near waste management facilities, so adverse effects to human health and the environment can be minimised.
Collapse
Affiliation(s)
- Luka Traven
- Department of Environmental Medicine, Medical Faculty University of Rijeka, Braće Branchetta 20/1, 51000, Rijeka, Croatia.
- Department of Environmental Health, Teaching Institute of Public Health of the Primorsko-Goranska County, Krešimirova 52a, 51000, Rijeka, Croatia.
| | - Željko Linšak
- Department of Environmental Medicine, Medical Faculty University of Rijeka, Braće Branchetta 20/1, 51000, Rijeka, Croatia
- Department of Environmental Health, Teaching Institute of Public Health of the Primorsko-Goranska County, Krešimirova 52a, 51000, Rijeka, Croatia
| | - Goran Crvelin
- Department of Environmental Health, Teaching Institute of Public Health of the Primorsko-Goranska County, Krešimirova 52a, 51000, Rijeka, Croatia
| | - Anivija Baldigara
- Technical Faculty, Doctoral Study in Environmental Engineering, University of Rijeka, Vukovarska 38, 51000, Rijeka, Croatia
| |
Collapse
|
2
|
Bruce N, Ng KTW, Vu HL. Use of seasonal parameters and their effects on FOD landfill gas modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:291. [PMID: 29667037 DOI: 10.1007/s10661-018-6663-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/04/2018] [Indexed: 05/20/2023]
Abstract
Temporal and spatial variations in landfill gas generations and emissions have been observed and reported by others. Real-time gas data between 2008 and 2014 from a municipal landfill located in a cold, semi-arid climate were consolidated to fit a linear-interpolated form of LandGEM. Seasonal variations in gas collection were observed in the landfill. LandGEM's default decay rate k was not applicable for this Canadian landfill due to significant overestimation (32.2% error). Optimal seasonal k and Lo collection parameters had 8.1% error compared to field data, compared to 8.3% error using optimal annual parameters. The optimal kwinter was 0.0118 year-1 and the ksummer was 0.0141 year-1 (14.7% difference), with a corresponding Lo of 100.0 m3/Mg which changed negligibly between the sets. Three pseudo-second order iterative methods were considered, and evaluated using RSS and generation parameters in the literature. A simple application study was conducted using LFGcost-Web, and found the increased precision of seasonal k's resulted in negligible differences with annual optimized k. The default parameters overestimated the net present worth by 12-155% for three of the four common LFG energy projects.
Collapse
Affiliation(s)
- Nathan Bruce
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada.
- Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada.
| | - Hoang Lan Vu
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| |
Collapse
|
3
|
Abushammal M, Basri N, Younes M. Landfill Methane Oxidation: Predictive Model Development. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jas.2015.283.288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
El-Fadel M, Abi-Esber L, Salhab S. Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:2106-2114. [PMID: 22265005 DOI: 10.1016/j.wasman.2011.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH(4) flux values calculated through tessellation, inverse distance weighing and kriging were 0.188±0.014, 0.224±0.012 and 0.237±0.008 l CH(4)/m(2) hr, respectively, compared to an arithmetic mean of 0.24 l/m(2) hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m(2) hr), and lower than the reported range for active landfills (0.42-2.46 l/m(2) hr). Simulation results matched field measurements for low methane generation potential (L(0)) values in the range of 19.8-102.6 m(3)/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.
Collapse
Affiliation(s)
- Mutasem El-Fadel
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon.
| | | | | |
Collapse
|
5
|
Widory D, Proust E, Bellenfant G, Bour O. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO₂ levels: the added value of the isotope (δ¹³C and δ¹⁸O CO₂; δ¹³C and δD CH₄) approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:1685-1692. [PMID: 22608681 DOI: 10.1016/j.wasman.2012.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/04/2012] [Accepted: 04/16/2012] [Indexed: 06/01/2023]
Abstract
We are presenting here a multi-isotope approach (δ¹³C and δ¹⁸O of CO₂; δ¹³C and δD of CH₄) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO₂ levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH₄ oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH₄ is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH₄ oxidation by the methanotrophic bacteria. δ¹³C of CO₂ samples taken at different heights (from below the cover up to 8m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.
Collapse
Affiliation(s)
- D Widory
- BRGM, 3 ave Claude Guillemin, 45000 Orléans, France.
| | | | | | | |
Collapse
|
6
|
Abichou T, Clark J, Chanton J. Reporting central tendencies of chamber measured surface emission and oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:1002-1008. [PMID: 20933379 DOI: 10.1016/j.wasman.2010.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/31/2010] [Accepted: 09/14/2010] [Indexed: 05/30/2023]
Abstract
Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report "averages" of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the "average" measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH(4) emissions and surface air CH(4) concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R(2)=0.86), indicating that surface scans are a good way of identifying locations of high emissions.
Collapse
Affiliation(s)
- Tarek Abichou
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA.
| | | | | |
Collapse
|
7
|
Scheutz C, Fredenslund AM, Nedenskov J, Kjeldsen P. Release and fate of fluorocarbons in a shredder residue landfill cell: 2. Field investigations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:2163-2169. [PMID: 20444588 DOI: 10.1016/j.wasman.2010.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/22/2010] [Accepted: 03/28/2010] [Indexed: 05/29/2023]
Abstract
The shredder residues from automobiles, home appliances and other metal containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to determine the gas composition, attenuation, and emission of fluorocarbons in a monofill shredder residue landfill cell by field investigation. Landfill gas generated within the shredder waste primarily consisted of CH(4) (27%) and N(2) (71%), without CO(2), indicating that the gas composition was governed by chemical reactions in combination with anaerobic microbial reactions. The gas generated also contained different fluorocarbons (up to 27 μg L(-1)). The presence of HCFC-21 and HCFC-31 indicated that anaerobic degradation of CFC-11 occurred in the landfill cell, as neither of these compounds has been produced for industrial applications. This study demonstrates that a landfill cell containing shredder waste has a potential for attenuating CFC-11 released from polyurethane (PUR) insulation foam in the cell via aerobic and anaerobic biodegradation processes. In deeper, anaerobic zones of the cell, reductive dechlorination of CFCs to HCFCs was evident, while in the shallow, oxic zones, there was a high potential for biooxidation of both methane and lesser chlorinated fluorocarbons. These findings correlated well with both laboratory results (presented in a companion paper) and surface emission measurements that, with the exception from a few hot spots, indicated that surface emissions were negative or below detection.
Collapse
Affiliation(s)
- Charlotte Scheutz
- Department of Environmental Engineering, Miljovej-Building 113, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
8
|
Abushammal M, Basri N, Basri H, Kadhum A, El-Shafie A. Estimation of Methane Emission from Landfills in Malaysia using the IPCC 2006 FOD Model. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/jas.2010.1603.1609] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
He R, Ruan A, Jiang C, Shen DS. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. BIORESOURCE TECHNOLOGY 2008; 99:7192-7199. [PMID: 18294841 DOI: 10.1016/j.biortech.2007.12.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 05/25/2023]
Abstract
CH4 oxidation capacities and microbial community structures developed in response to the presence of CH4 were investigated in two types of landfill cover soil microcosms, waste soil (fine material in stabilized waste) and clay soil. CH4 emission fluxes were lower in the waste soil cover over the course of the experiment. After exposure to CH4 flow for 120 days, the waste soil developed CH4 oxidation capacity from 0.53 to 11.25-13.48micromol CH4gd.w.(-1)h(-1), which was ten times higher than the clay soil. The topsoils of the two soil covers were observed dried and inhibited CH4 oxidation. The maximum CH4 oxidation rate occurred at the depth of 10-20cm in the waste soil cover (the middle layer), whereas it took place mainly at the depth of 20-30cm in the clay soil cover (the bottom layer). The amounts of the phospholipid fatty acid (PLFA) biomarks 16:1omega8c and 18:1omega8c for type I and II methanotrophs, respectively, showed that type I methanotrophic bacteria predominated in the clay soil, while the type II methanotrophic bacteria were abundant in the waste soil, and the highest population in the middle layer. The results also indicated that a greater active methanotrophic community was developed in the waste soil relative to the clay soil.
Collapse
Affiliation(s)
- Ruo He
- College of Environment and Resource, Zhejiang University, Hangzhou 310029, China.
| | | | | | | |
Collapse
|
10
|
He R, Ruan A, Shen DS. Effects of methane on the microbial populations and oxidation rates in different landfill cover soil columns. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:785-93. [PMID: 17474005 DOI: 10.1080/10934520701304468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A considerable fraction of methane produced in landfills is oxidized by landfill cover soils. In this work, microbial populations and oxidation rates developed in response to the presence of methane were studied in three soil columns simulated landfill cover soil environments. The population of aerobic heterotrophic bacteria was highest in the waste soil, middle in the clay soil, and lowest in the red soil. After exposure to methane-rich environments, the populations of methanotrophic bacteria showed increases in the waste and clay soils. The population of methanotrophic bacteria increased from 30.77x10(4) to 141.77x10(4) cfu g d.w.-1 in the middle layer of the waste soil column as a function of exposure to methane for 120 days. The populations of methanotrophic bacteria were correlated with the potential methane oxidation rates in the waste and clay soils, respectively. The topsoil was observed to be dried in the three soil columns. Most of methane oxidation occurred at the depth of between 10 and 20 cm in the waste soil column, while it took place mainly at the depth of between 20 and 30 cm in the clay soil column.
Collapse
Affiliation(s)
- Ruo He
- College of Environment and Resource, Zhejiang University, Hangzhou, China.
| | | | | |
Collapse
|
11
|
Abichou T, Chanton J, Powelson D, Fleiger J, Escoriaza S, Lei Y, Stern J. Methane flux and oxidation at two types of intermediate landfill covers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2006; 26:1305-12. [PMID: 16426833 DOI: 10.1016/j.wasman.2005.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 09/20/2005] [Accepted: 11/17/2005] [Indexed: 05/06/2023]
Abstract
Methane emissions were measured on two areas at a Florida (USA) landfill using the static chamber technique. Because existing literature contains few measurements of methane emissions and oxidation in intermediate cover areas, this study focused on field measurement of emissions at 15-cm-thick non-vegetated intermediate cover overlying 1-year-old waste and a 45-cm-thick vegetated intermediate cover overlying 7-year-old waste. The 45 cm thick cover can also simulate non-engineered covers associated with older closed landfills. Oxidation of the emitted methane was evaluated using stable isotope techniques. The arithmetic means of the measured fluxes were 54 and 22 g CH(4) m(-2)d(-1) from the thin cover and the thick cover, respectively. The peak flux was 596 g m(-2)d(-1) for the thin cover and 330 g m(-2)d(-1) for the thick cover. The mean percent oxidation was significantly greater (25%) at the thick cover relative to the thin cover (14%). This difference only partly accounted for the difference in emissions from the two sites. Inverse distance weighing was used to describe the spatial variation of flux emissions from each cover type. The geospatial mean flux was 21.6 g m(-2)d(-1) for the thick intermediate cover and 50.0 g m(-2)d(-1) for the thin intermediate cover. High emission zones in the thick cover were fewer and more isolated, while high emission zones in the thin cover were continuous and covered a larger area. These differences in the emission patterns suggest that different CH(4) mitigation techniques should be applied to the two areas. For the thick intermediate cover, we suggest that effective mitigation of methane emissions could be achieved by placement of individualized compost cells over high emission zones. Emissions from the thin intermediate cover, on the other hand, can be mitigated by placing a compost layer over the entire area.
Collapse
Affiliation(s)
- Tarek Abichou
- Department of Civil and Environmental Engineering, Florida A&M University, Tallahassee, FL 32310, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graff C, Golvan YML, Hebe I. Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? WASTE MANAGEMENT (NEW YORK, N.Y.) 2006; 26:516-25. [PMID: 16198554 DOI: 10.1016/j.wasman.2005.07.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 06/01/2005] [Accepted: 07/29/2005] [Indexed: 05/04/2023]
Abstract
Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH(4) m(-2) d(-1). Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery.
Collapse
Affiliation(s)
- K Spokas
- University of Minnesota, Department of Soil, Water, and Climate, St. Paul, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mahieu K, Visscher AD, Vanrolleghem PA, Cleemput OV. Carbon and hydrogen isotope fractionation by microbial methane oxidation: improved determination. WASTE MANAGEMENT (NEW YORK, N.Y.) 2006; 26:389-98. [PMID: 16442790 DOI: 10.1016/j.wasman.2005.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 11/18/2005] [Indexed: 05/06/2023]
Abstract
Isotope fractionation is a promising tool for quantifying methane oxidation in landfill cover soils. For good quantification an accurate determination of the isotope fractionation factor (alpha) of methane oxidation based on independent batch experiments with soil samples from the landfill cover is required. Most studies so far used data analysis methods based on approximations of the Rayleigh model to determine alpha. In this study, the two most common approximations were tested, the simplified Rayleigh approach and the Coleman method. To do this, the original model of Rayleigh was described in measurable variables, methane concentration and isotopic abundances, and fitted to batch oxidation data by means of a weighted non-linear errors-in-variables regression technique. The results of this technique were used as a benchmark to which the results of the two conventional approximations were compared. Three types of batch data were used: simulated data, data obtained from the literature, and data obtained from new batch experiments conducted in our laboratory. The Coleman approximation was shown to be acceptable but not recommended for carbon fractionation (error on alpha-1 up to 5%) and unacceptable for hydrogen fractionation (error up to 20%). The difference between the simplified Rayleigh approach and the exact Rayleigh model is much smaller for both carbon and hydrogen fractionation (error on alpha-1<0.05%). There is also a small difference when errors in both variables (methane concentration and isotope abundance) are accounted for instead of assuming an error-free independent variable. By means of theoretical calculations general criteria, not limited to methane, (13)C, or D, were developed for the validity of the simplified Rayleigh approach when using labelled compounds.
Collapse
Affiliation(s)
- Koenraad Mahieu
- Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
14
|
McBain MC, Warland JS, McBride RA, Wagner-Riddle C. Micrometeorological measurements of N2O and CH4 emissions from a municipal solid waste landfill. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2005; 23:409-19. [PMID: 16273949 DOI: 10.1177/0734242x05057253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micrometeorological measurements of methane (CH4) and nitrous oxide (N2O) emissions were made at the decommissioned Park Road Landfill in Grimsby, Ontario, Canada between June and August 2002. The influence of precipitation, air temperature, wind speed and barometric pressure on the temporal variability of landfill biogas emissions was assessed. Gas flux measurements were obtained using a micrometeorological mass balance measurement technique [integrated horizontal flux (IHF)] in conjunction with two tunable diode laser trace gas analyser (TDLTGA) systems. This method allows for continuous, non-intrusive measurements of gas flux at high temporal resolution. Mean fluxes of N2O were negligible over the duration of the study (-0.23 to 0.02 microg m(-2) s(-1)). In contrast, mean emissions of CH4 were much greater (80.4 to 450.8 microg m(-2) s(-1)) and varied both spatially and temporally. Spatial variations in CH4 fluxes were observed between grass kill areas (biogas 'hot spots') and the densely grass-covered areas of the landfill. Temporal variations in CH4 fluxes were also observed, due at least in part to barometric pressure, wind speed and precipitation effects.
Collapse
Affiliation(s)
- Matthew C McBain
- Department of Land Resource Science, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
15
|
Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00254-005-0008-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|