1
|
López I, Benzo M, Passeggi M, Borzacconi L. A simple kinetic model applied to anaerobic digestion of cow manure. ENVIRONMENTAL TECHNOLOGY 2021; 42:3451-3462. [PMID: 32072868 DOI: 10.1080/09593330.2020.1732473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
A simple model of anaerobic degradation in a continuous stirred digester is presented. The hydrolysis of cow manure was modelled as consisting of two fractions, one rapidly degradable and the other more slowly degradable, and both processes were represented by first-order kinetics in a two-substrate first-order (TSFO) model. The fractions were separated by water flushing. Biomethane potential (BMP) tests were performed to determine the hydrolysis constant and biodegradability of each fraction. The hydrolysis constants of the rapidly and slowly degradable fractions were 0.278 and 0.069 d-1, respectively. Coupled with a simple anaerobic digestion model, the TSFO model was used to simulate the digester behaviour and predict methane production. Experiments in a 3.0 L digester were used to determine the decay constant and yield values and to validate the model. Two solid loads (2.9 and 4.4 gVS/L.d) were applied to the digester, and the dynamics of both biodegradable fractions, the non-biodegradable fraction and the microorganism concentration were reproduced by the model. These results approximate the actual biodegradable solids removal to within 85%. A parametric sensitivity study was performed, and the results show that the hydrolysis constant mainly influences the biodegradable fractions and that the decay and yield parameters mainly influence the microorganism concentration.
Collapse
Affiliation(s)
- Iván López
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| | - Martín Benzo
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Passeggi
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| | - Liliana Borzacconi
- Chemical Engineering Department, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Artichoke Biorefinery: From Food to Advanced Technological Applications. Foods 2021; 10:foods10010112. [PMID: 33430385 PMCID: PMC7827807 DOI: 10.3390/foods10010112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/05/2022] Open
Abstract
A sequential extraction process has been designed for valorizing globe artichoke plant residues and waste (heads, leaves, stalks, and roots left in the field) by means of green extraction techniques according to a biorefinery approach. We investigated two cascading extractions based on microwave-assisted extractions (MAE) and green solvents (water and ethanol) that have been optimized for varying temperature, solvent and extraction time. In the first step, phenols were extracted with yields that ranged between 6.94 mg g−1 dw (in leaves) and 3.28 mg g−1 dw (in roots), and a phenols productivity of 175.74 kg Ha−1. In the second step, inulin was extracted with impressive yields (42% dw), higher than other conventional inulin sources, corresponding to an inulin productivity of 4883.58 kg Ha−1. The remaining residues were found to be valuable feedstocks both for bioenergy production and green manure (back to the field), closing the loop according to the Circular Economy paradigm.
Collapse
|
3
|
Akyol Ç. In search of the optimal inoculum to substrate ratio during anaerobic co-digestion of spent coffee grounds and cow manure. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:1278-1283. [PMID: 32356493 DOI: 10.1177/0734242x20914731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The inoculum to substrate (I:S) ratio is a crucial operating parameter during the start-up period of anaerobic digestion (AD) processes and this ratio shows high differentiation with respect to substrate composition. While spent coffee grounds (SCG) have started to gain attraction in AD as a co-substrate due to their vast production and promising methane potential, there is still not enough information on the operative environment of SCG-based biogas reactors. This study investigated the optimal I:S ratio during anaerobic co-digestion of SCG and cow manure. Biochemical methane potential tests were conducted at mesophilic conditions and the influence of I:S ratio on methane production and digestion stability was evaluated at a wide range of I:S ratios from 0.5:1 to 4:1 (volatile solids (VS) basis). Methane yields increased gradually starting from the I:S ratio of 0.5:1 up to 3:1 and the highest methane yield (225 mlCH4 gVS-1) was achieved at the I:S ratio of 3:1. Comparatively lower methane yields were obtained at the ratios of 3.5:1 and 4:1. Instable AD conditions were established at the lowest I:S ratio examined (0.5:1), which caused volatile fatty acid (VFA) accumulation. The results highlighted that anaerobic co-digestion of SCG and cow manure is a promising approach, while the I:S ratio should be well-maintained due to the high potential risk of rapid and/or excess VFA production of these feedstocks.
Collapse
Affiliation(s)
- Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Turkey
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, Italy
| |
Collapse
|
4
|
Measurement of Biochemical Methane Potential of Heterogeneous Solid Substrates: Results of a Two-Phase French Inter-Laboratory Study. WATER 2020. [DOI: 10.3390/w12102814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biochemical methane potential (BMP) is essential to determine the production of methane for various substrates; literature shows important discrepancies for the same substrates. In this paper, a harmonized BMP protocol was developed and tested with two phases of BMP tests carried out by eleven French laboratories. Surprisingly, for the three same solid tested substrates (straw; raw mix and dried-shredded mix of potatoes, maize, beef meat and straw; and mayonnaise), the standard deviations of the repeatability and reproducibility inter-laboratory were not enhanced by the harmonized protocol (average of about 25% depending on the substrate), as compared to a previous step where all laboratories used their own protocols. Moreover, statistical analyses of all the results, after removal of the outliers (about 15% of all observations), did not highlight significant effect of the operational effect on BMP (stirring, automatic or manual gas quantification, use of trace metal, uses a bicarbonate buffer, inoculum to substrate ratio) at least for the tested ranges. On the other hand, the average intra-laboratory repeatability was low, about 7%, whatever the protocol, the substrate and the laboratory. It also appears that drying the SA substrate, which contained proteins, carbohydrates, lipids and fibers, does not impact its BMP.
Collapse
|
5
|
Improving Inter-Laboratory Reproducibility in Measurement of Biochemical Methane Potential (BMP). WATER 2020. [DOI: 10.3390/w12061752] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biochemical methane potential (BMP) tests used to determine the ultimate methane yield of organic substrates are not sufficiently standardized to ensure reproducibility among laboratories. In this contribution, a standardized BMP protocol was tested in a large inter-laboratory project, and results were used to quantify sources of variability and to refine validation criteria designed to improve BMP reproducibility. Three sets of BMP tests were carried out by more than thirty laboratories from fourteen countries, using multiple measurement methods, resulting in more than 400 BMP values. Four complex but homogenous substrates were tested, and additionally, microcrystalline cellulose was used as a positive control. Inter-laboratory variability in reported BMP values was moderate. Relative standard deviation among laboratories (RSDR) was 7.5 to 24%, but relative range (RR) was 31 to 130%. Systematic biases were associated with both laboratories and tests within laboratories. Substrate volatile solids (VS) measurement and inoculum origin did not make major contributions to variability, but errors in data processing or data entry were important. There was evidence of negative biases in manual manometric and manual volumetric measurement methods. Still, much of the observed variation in BMP values was not clearly related to any of these factors and is probably the result of particular practices that vary among laboratories or even technicians. Based on analysis of calculated BMP values, a set of recommendations was developed, considering measurement, data processing, validation, and reporting. Recommended validation criteria are: (i) test duration at least 1% net 3 d, (ii) relative standard deviation for cellulose BMP not higher than 6%, and (iii) mean cellulose BMP between 340 and 395 NmLCH4 gVS−1. Evidence from this large dataset shows that following the recommendations—in particular, application of validation criteria—can substantially improve reproducibility, with RSDR < 8% and RR < 25% for all substrates. The cellulose BMP criterion was particularly important. Results show that is possible to measure very similar BMP values with different measurement methods, but to meet the recommended validation criteria, some laboratories must make changes to their BMP methods. To help improve the practice of BMP measurement, a new website with detailed, up-to-date guidance on BMP measurement and data processing was established.
Collapse
|
6
|
Achinas S, Euverink GJW. Elevated biogas production from the anaerobic co-digestion of farmhouse waste: Insight into the process performance and kinetics. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:1240-1249. [PMID: 31532334 PMCID: PMC6859599 DOI: 10.1177/0734242x19873383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The biodegradable portion of solid waste generated in farmhouses can be treated for energy recovery with small portable biogas plants. This action can be done across the Netherlands and all around the planet. This study aims to appraise the performance of anaerobic digestion of different wastes (cow manure, food waste and garden waste) obtained from a regional farmhouse. Batch reactors were established under mesophilic conditions in order to investigate the impact of ternary mixtures on the anaerobic digestion process performance. Different mixing ratios were set in the batch tests. The upshots from the experiments connoted that ternary digestion with cow manure:food waste:garden waste mixing ratio of 40:50:10 yielded higher biogas amount. The kinetics' results showed quite good congruence with the experimental study. The results from the kinetic analysis appeared to be in line with the experimental one.
Collapse
Affiliation(s)
- Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | | |
Collapse
|
7
|
Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation. ENERGIES 2019. [DOI: 10.3390/en12122311] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article intends to promote the usage of potato peels as efficient substrate for the anaerobic digestion process for energy recovery and waste abatement. This study examined the performance of anaerobic digestion of potato peels in different inoculum-to-substrate ratios. In addition, the impact of combined treatment with cow manure and pretreatment of potato peels was examined. It was found that co-digestion of potato peel waste and cow manure yielded up to 237.4 mL CH4/g VSadded, whereas the maximum methane yield from the mono-digestion of potato peels was 217.8 mL CH4/g VSadded. Comparing the co-digestion to mono-digestion of potato peels, co-digestion in PPW/CM ratio of 60:40 increased the methane yield by 10%. In addition, grinding and acid hydrolysis applied to potato peels were positively effective in increasing the methane amount reaching 260.3 and 283.4 mL CH4/g VSadded respectively. Likewise, compared to untreated potato peels, pretreatment led to an elevation of the methane amount by 9% and 17% respectively and alleviated the kinetics of biogas production.
Collapse
|
8
|
Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material. ENERGIES 2019. [DOI: 10.3390/en12020217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of this research was to appraise the effect of combined inoculation on the performance of anaerobic digesters treating hardly degradable material, and particularly the pressed fine sieved fraction (PFSF) derived from wastewater treatment plants (WWTPs). Batch tests were conducted in mesophilic conditions in order to examine the optimal mixing ratio of inoculums. Mixing ratios of 100:0, 75:25, 50:50, 25:75, and 0:100 of three different inoculums were applied in the batch tests. The findings indicated that the inoculation of digested activated sludge with digested organic fraction of municipal solid waste (MSW) in the ratio 25:75 resulted in a higher PFSF degradation and a higher biogas yield. The results from the kinetic analysis fit well with the results from the batch experiment.
Collapse
|
9
|
Artichoke Polyphenols Produce Skin Anti-Age Effects by Improving Endothelial Cell Integrity and Functionality. Molecules 2018; 23:molecules23112729. [PMID: 30360471 PMCID: PMC6278506 DOI: 10.3390/molecules23112729] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022] Open
Abstract
Artichoke is a characteristic crop of the Mediterranean area, recognized for its nutritional value and therapeutic properties due to the presence of bioactive components such as polyphenols, inulin, vitamins and minerals. Artichoke is mainly consumed after home and/or industrial processing, and the undersized heads, not suitable for the market, can be used for the recovery of bioactive compounds, such as polyphenols, for cosmetic applications. In this paper, the potential skin anti-age effect of a polyphenolic artichoke extract on endothelial cells was investigated. The methodology used was addressed to evaluate the antioxidant and anti-inflammatory activities and the improvement of gene expression of some youth markers. The results showed that the artichoke extract was constituted by 87% of chlorogenic, 3,5-O-dicaffeoylquinic, and 1,5-O-dicaffeoylquinic acids. The extract induced important molecular markers responsible for the microcirculation and vasodilatation of endothelial cells, acted as a potential anti-inflammatory agent, protected the lymphatic vessels from oxidative damage by ROS formation, and enhanced the cellular cohesion by reinforcing the tight junction complex. In addition, the artichoke extract, through the modulation of molecular pathways, improved the expression of genes involved in anti-ageing mechanisms. Finally, clinical testing on human subjects highlighted the enhancement by 19.74% of roughness and 11.45% of elasticity from using an artichoke extract cosmetic formulation compared to placebo cream.
Collapse
|
10
|
Pagano I, Piccinelli AL, Celano R, Campone L, Gazzerro P, Russo M, Rastrelli L. Pressurized hot water extraction of bioactive compounds from artichoke by-products. Electrophoresis 2018; 39:1899-1907. [PMID: 29775214 DOI: 10.1002/elps.201800063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 01/02/2023]
Abstract
Artichoke by-products are a suitable source of health-promoting ingredients for the production of dietary supplements and food additives. A pressurized hot water extraction (PHWE) was developed to recover caffeoylquinic acids (CQAs) and flavone glycosides (FLs) from agro-industrial artichoke by-products. The main factors influencing PHWE efficiency and CQA isomerization (temperature, numbers of cycles, modifier, and extraction time) were carefully studied and optimized by response surface design. The proposed PHWE procedure provides an exhaustive extraction of CQAs and FLs (recoveries: 93-105% and 90-105%) from artichoke external bracts and leaves of different cultivars (p > 0.05), without significant formation of artefacts generated by high temperatures. PHWE extracts showed CQA and FL levels (14-37 mg/g and 3-19 mg/g, respectively) comparable to commercial products and marked antioxidative effects (EC50 11-83 μg/mL) by cellular antioxidant activity assay in human hepatocarcinoma HepG2 cells. These results proved that PHWE is an excellent green technique to recover bioactive compounds from artichoke agro-industrial residues.
Collapse
Affiliation(s)
- Imma Pagano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | | | - Rita Celano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Luca Campone
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Mariateresa Russo
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Calabria, Italy
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|
11
|
Bonifazi G, Serranti S. Chemical imaging: An innovative tool for particulate matter characterization and sorting. PARTICULATE SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1080/02726351.2015.1115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy. ENERGIES 2016. [DOI: 10.3390/en9020092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Fabbri A, Bonifazi G, Serranti S. Micro-scale energy valorization of grape marcs in winery production plants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 36:156-165. [PMID: 25529134 DOI: 10.1016/j.wasman.2014.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.
Collapse
Affiliation(s)
- Andrea Fabbri
- Department of Chemical Engineering, Materials & Environment - Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Giuseppe Bonifazi
- Department of Chemical Engineering, Materials & Environment - Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Silvia Serranti
- Department of Chemical Engineering, Materials & Environment - Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy.
| |
Collapse
|