1
|
Trasande L. The role of plastics in allergy, immunology, and human health: What the clinician needs to know and can do about it. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00417-4. [PMID: 38945394 DOI: 10.1016/j.anai.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The effects of plastics on human health include allergy, atopy, asthma, and immune disruption, but the consequences of chemicals used in plastic materials span nearly every organ system and age group as well. Behavioral interventions to reduce plastic chemical exposures have reduced exposure in low- and high-income populations, yet health care providers know little about plastic chemical effects and seldom offer steps to patients to limit exposure. Health care facilities also use many products that increase the risk of chemical exposures, particularly for at-risk populations such as children in neonatal intensive care units. Given that disparities in plastic chemical exposure are well documented, collaborative efforts are needed between scientists and health care organizations, to develop products that improve provider knowledge about chemicals used in plastic materials and support the use of safer alternatives in medical devices and other equipment.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, New York; Department of Population Health, NYU Grossman School of Medicine, New York, New York; NYU Wagner Graduate School of Public Service, New York, New York.
| |
Collapse
|
2
|
Saka MB, Hashim MHBM. Critical assessment of the effectiveness of different dust control measures in a granite quarry. J Public Health Policy 2024; 45:212-233. [PMID: 38600319 DOI: 10.1057/s41271-024-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
The exposure to respirable crystalline silica found in granite dust presents significant health hazards to quarry workers and nearby communities, including silicosis and various respiratory ailments. This study evaluates the efficacy of various pollution control measures implemented in granite quarries. It aimed to provide a comprehensive critical assessment of the effectiveness of various dust control measures, considering their mechanisms, impact on air quality, and implications for worker health and community welfare. The strategy involved compiling and systematically analysing existing research articles, literature, and industry reports. The investigation identified three primary categories of measures: engineering controls, water-based suppression methods, and technological solutions. The study highlighted the significance of environmental impact and sustainability factors in selecting measures. These factors include water and energy consumption, production of secondary pollutants, long-term ecological effects, regulatory compliance, and cost-effectiveness. Operators and policymakers should utilize integrated, context-specific, inventive, and interdisciplinary strategies to efficiently control particle emissions from granite quarrying.
Collapse
Affiliation(s)
- Mumini Babatunde Saka
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mohd Hazizan Bin Mohd Hashim
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
James BD, Ward CP, Hahn ME, Thorpe SJ, Reddy CM. Minimizing the Environmental Impacts of Plastic Pollution through Ecodesign of Products with Low Environmental Persistence. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1185-1194. [PMID: 38273987 PMCID: PMC10806995 DOI: 10.1021/acssuschemeng.3c05534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
While plastic pollution threatens ecosystems and human health, the use of plastic products continues to increase. Limiting its harm requires design strategies for plastic products informed by the threats that plastics pose to the environment. Thus, we developed a sustainability metric for the ecodesign of plastic products with low environmental persistence and uncompromised performance. To do this, we integrated the environmental degradation rate of plastic into established material selection strategies, deriving material indices for environmental persistence. By comparing indices for the environmental impact of on-the-market plastics and proposed alternatives, we show that accounting for the environmental persistence of plastics in design could translate to societal benefits of hundreds of millions of dollars for a single consumer product. Our analysis identifies the materials and their properties that deserve development, adoption, and investment to create functional and less environmentally impactful plastic products.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
- Department
of Biology, Woods Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| | - Collin P. Ward
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Department
of Biology, Woods Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| | - Steven J. Thorpe
- Department
of Materials Science and Engineering, University
of Toronto; Toronto, Ontario M5S 3E4, Canada
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
4
|
James BD, Reddy CM, Hahn ME, Nelson RK, de Vos A, Aluwihare LI, Wade TL, Knap AH, Bera G. Fire and Oil Led to Complex Mixtures of PAHs on Burnt and Unburnt Plastic during the M/V X-Press Pearl Disaster. ACS ENVIRONMENTAL AU 2023; 3:319-335. [PMID: 37743953 PMCID: PMC10515710 DOI: 10.1021/acsenvironau.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 09/26/2023]
Abstract
In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship's underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Robert K. Nelson
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Asha de Vos
- Oceanswell, 9 Park Gardens, Colombo 00500, Sri Lanka
- The
Oceans Institute, University of Western
Australia, 35 Stirling
Highway, Perth, WA 6009, Australia
| | - Lihini I. Aluwihare
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Terry L. Wade
- Geochemical
and Environmental Research Group, Texas
A&M University, College Station, Texas 77845, United States
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
| | - Anthony H. Knap
- Geochemical
and Environmental Research Group, Texas
A&M University, College Station, Texas 77845, United States
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
- Department
of Ocean Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal Bera
- Geochemical
and Environmental Research Group, Texas
A&M University, College Station, Texas 77845, United States
| |
Collapse
|
5
|
Alencar MV, Gimenez BG, Sasahara C, Elliff CI, Velis CA, Rodrigues LS, Conti LA, Gonçalves-Dias SLF, Cetrulo TB, Scrich VM, Turra A. Advancing plastic pollution hotspotting at the subnational level: Brazil as a case study in the Global South. MARINE POLLUTION BULLETIN 2023; 194:115382. [PMID: 37572434 DOI: 10.1016/j.marpolbul.2023.115382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Identifying sources is crucial for proposing effective actions to combat marine litter pollution. Here, we used an innovative approach to identify hotspots of mismanaged plastic waste (MPW) within Brazil and subsequent leakage to the ocean, based on population density, socio-economic conditions, municipal solid waste management and environmental parameters. We estimated plastic waste generation and MPW for each of the 5570 Brazilian municipalities, which totaled 3.44 million metric tons per year. Then, we estimated the probability of litter mobilization and transport (P) and the relative risk of leakage to the ocean (MPW × P). The Guanabara Bay and La Plata River comprised the main oceanic entry hotspots of litter produced in Brazil. The use of national databases allowed us to increase spatial and temporal granularity, offering a detailed baseline for the application of prevention and mitigation actions. However, overcoming data limitations is still a challenge in Brazil as in other Global South countries.
Collapse
Affiliation(s)
- Melanie Vianna Alencar
- Oceanographic Institute, University of São Paulo (USP), 191 Praça do Oceanográfico, Cidade Universitária, São Paulo, SP 05508-120, Brazil; UNESCO Chair for Ocean Sustainability, Brazil.
| | - Bianca Gabani Gimenez
- Oceanographic Institute, University of São Paulo (USP), 191 Praça do Oceanográfico, Cidade Universitária, São Paulo, SP 05508-120, Brazil; UNESCO Chair for Ocean Sustainability, Brazil
| | - Camila Sasahara
- Energy and Environment Institute, University of São Paulo (USP), 1289 Av. Prof. Luciano Gualberto, Cidade Universitária, São Paulo, SP 05508-900, Brazil
| | - Carla Isobel Elliff
- Oceanographic Institute, University of São Paulo (USP), 191 Praça do Oceanográfico, Cidade Universitária, São Paulo, SP 05508-120, Brazil; UNESCO Chair for Ocean Sustainability, Brazil
| | - Costas A Velis
- University of Leeds, School of Civil Engineering, Woodhouse lane, Leeds LS2 9JT, UK
| | - Letícia Stevanato Rodrigues
- Energy and Environment Institute, University of São Paulo (USP), 1289 Av. Prof. Luciano Gualberto, Cidade Universitária, São Paulo, SP 05508-900, Brazil
| | - Luis Americo Conti
- School of Arts, Sciences and Humanities, University of São Paulo (USP), 1000 Rua Arlindo Bettio, USP Leste, São Paulo, SP 03828-000, Brazil
| | - Sylmara Lopes Francelino Gonçalves-Dias
- Energy and Environment Institute, University of São Paulo (USP), 1289 Av. Prof. Luciano Gualberto, Cidade Universitária, São Paulo, SP 05508-900, Brazil; School of Arts, Sciences and Humanities, University of São Paulo (USP), 1000 Rua Arlindo Bettio, USP Leste, São Paulo, SP 03828-000, Brazil
| | - Tiago Balieiro Cetrulo
- School of Arts, Sciences and Humanities, University of São Paulo (USP), 1000 Rua Arlindo Bettio, USP Leste, São Paulo, SP 03828-000, Brazil; Federal Institute of Rio Grande do Sul (IFRS), 7000 Av. Senador Salgado Filho, Viamão, RS 94440-000, Brazil
| | - Vitória Milanez Scrich
- Oceanographic Institute, University of São Paulo (USP), 191 Praça do Oceanográfico, Cidade Universitária, São Paulo, SP 05508-120, Brazil; UNESCO Chair for Ocean Sustainability, Brazil
| | - Alexander Turra
- Oceanographic Institute, University of São Paulo (USP), 191 Praça do Oceanográfico, Cidade Universitária, São Paulo, SP 05508-120, Brazil; UNESCO Chair for Ocean Sustainability, Brazil
| |
Collapse
|
6
|
Li X, Yao Y, Zhao M, Yang J, Shi Y, Yu H, Cheng Z, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Rainfall Runoffs and Agricultural Soils around a Plastic Recycling Industrial Park. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12794-12805. [PMID: 37579047 DOI: 10.1021/acs.est.3c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Plastic recycling and reprocessing activities may release organophosphate ester (OPE) flame retardants and plasticizers into the surrounding environment. However, the relevant contamination profiles and impacts remain not well studied. This study investigated the occurrence of 28 OPEs and their metabolites (mOPEs) in rainfall runoffs and agricultural soils around one of the largest plastic recycling industrial parks in North China and identified novel organophosphorus compounds (NOPs) using high-resolution mass spectrometry-based nontarget analysis. Twenty and twenty-seven OPEs were detected in runoff water and soil samples, with total concentrations of 86.0-2491 ng/L and 2.53-199 ng/g dw, respectively. Thirteen NOPs were identified, of which eight were reported in the environment for the first time, including a chlorine-containing OPE, an organophosphorus heterocycle, a phosphite, three novel OPE metabolites, and two oligomers. Triphenylphosphine oxide and diphenylphosphinic acid occurred ubiquitously in runoffs and soils, with concentrations up to 390 ng/L and 40.2 ng/g dw, respectively. The downwind areas of the industrial park showed elevated levels of OPEs and NOPs. The contribution of hydroxylated mOPEs was higher in soils than in runoffs. These findings suggest that plastic recycling and reprocessing activities are significant sources of OPEs and NOPs and that biotransformation may further increase the ecological and human exposure risk.
Collapse
Affiliation(s)
- Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
You J, Li J, Wang Z, Devanesan S, Farhat K, Kim W, Sivarasan G, Zhang H. Improving the efficiency of metal ions doped Fe 2O 3 nanoparticles: Photocatalyst for removal of organic dye from aqueous media. CHEMOSPHERE 2023:139229. [PMID: 37354953 DOI: 10.1016/j.chemosphere.2023.139229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The metal ion-based nanocomposite photocatalysts were accepted to exhibit a wide range of photocatalytic and biological applications. In this paper, we synthesize bare Fe2O3, 1 wt% metal (Ag, Co, and Cu) doped Fe2O3 nanoparticles (NPs) using a simple hydrothermal process and wet impregnation method. The as-prepared nanomaterials crystalline structure, shape, optical characteristics, and elemental composition were determined by using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDS) and Transmission electron microscopy (TEM) techniques. Furthermore, the synthesized nanocomposites were utilized as a photosensitizer for the degradation of reactive red (RR120) and orange II (O-II) dyes under sunlight irradiation. The synthesized 1 wt% Ag-Fe2O3 (AgF) NPs samples exhibit a more exceptional catalytic performance of RR120 and O-II dyes (98.32%) within 120 min than the existing Fe2O3, 1 wt% Co-Fe2O3, and Cu-Fe2O3 NPs. The effect of parameters such as exciton formation under solar irradiation, charge recombination rate, and surface charge availability. The metal oxide-doped nanocomposite economic relevance is revealed by their long-term durability and recyclability in photodegradation reactions. The photocatalytic investigations show that the active species O2∙-, HO∙ and h+ play an important role in the dye degradation process. This research might pave the opportunity for the sustainable development of greater photocatalysts for photodegradation and a wide range of environmental applications.
Collapse
Affiliation(s)
- Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Jingjing Li
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhiwei Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| | - Hangzhou Zhang
- Department of Orthopedics; Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Cimpan C, Iacovidou E, Rigamonti L, Thoden van Velzen EU. Keep circularity meaningful, inclusive and practical: A view into the plastics value chain. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:115-121. [PMID: 37167709 DOI: 10.1016/j.wasman.2023.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
New policies to promote the circular economy have created an urgent need for businesses and public authorities to quantify and monitor the level of circularity of materials, components and products. However, flows of materials, components and products through society are inherently complex, involving intricate value chains, many stakeholders, and interests. We argue that current actions may be overly focused on superficial effects, and losing sight of true circular economy goals. Using plastic packaging as an example, the present contribution deliberates the questions, "does measuring circularity address its goals?", "does it cover new technologies and regional specificities?", and "can its goals be addressed with simple assessment approaches?". In answering these questions, we argue that there is an impending risk of cementing policy and infrastructures that may not contribute to true sustainability. Furthermore, future technologies and developing regions are hardly included in the current circularity strategies. To further spark a discussion on the challenge of simplicity, we present a scorecard which can help incumbents to approximate the level of sustainable circularity of their products.
Collapse
Affiliation(s)
- Ciprian Cimpan
- SDU Life Cycle Engineering, University of Southern Denmark, Denmark
| | - Eleni Iacovidou
- Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom
| | - Lucia Rigamonti
- Civil and Environmental Engineering Department, Politecnico Di Milano, Italy
| | | |
Collapse
|
9
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
10
|
Antohi VM, Ionescu RV, Zlati ML, Iticescu C, Georgescu PL, Calmuc M. Regional Regression Correlation Model of Microplastic Water Pollution Control Using Circular Economy Tools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4014. [PMID: 36901030 PMCID: PMC10002311 DOI: 10.3390/ijerph20054014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Water pollution caused by microplastics represents an important challenge for the environment and people's health. The weak international regulations and standards in this domain support increased water pollution with microplastics. The literature is unsuccessful in establishing a common approach regarding this subject. The main objective of this research is to develop a new approach to necessary policies and ways of action to decrease water pollution caused by microplastics. In this context, we quantified the impact of European water pollution caused by microplastics in the circular economy. The main research methods used in the paper are meta-analysis, statistical analysis and an econometric approach. A new econometric model is developed in order to assist the decision makers in increasing efficiency of public policies regarding water pollution elimination. The main result of this study relies on combining, in an integrated way, the Organisation for Economic Co-operation and Development's (OECD) data on microplastic water pollution and identifying relevant policies to combat this type of pollution.
Collapse
Affiliation(s)
- Valentin Marian Antohi
- Department of Business Administration, Dunarea de Jos University of Galati, 800001 Galati, Romania
- Department of Finance, Accounting and Economic Theory, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Romeo Victor Ionescu
- Department of Administrative Sciences and Regional Studies, Dunarea de Jos University of Galati, 800201 Galati, Romania
| | - Monica Laura Zlati
- Department of Business Administration, Dunarea de Jos University of Galati, 800001 Galati, Romania
| | - Catalina Iticescu
- Department of Chemistry, Physics and Environment, REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Puiu Lucian Georgescu
- Department of Chemistry, Physics and Environment, REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Madalina Calmuc
- REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| |
Collapse
|
11
|
Cook E, Derks M, Velis CA. Plastic waste reprocessing for circular economy: A systematic scoping review of risks to occupational and public health from legacy substances and extrusion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160385. [PMID: 36427715 DOI: 10.1016/j.scitotenv.2022.160385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The global plastics reprocessing sector is likely expand as the circular economy becomes more established and efforts to curb plastic pollution increase. Via a critical systematic scoping review (PRISMA-ScR), we focused on two critical challenges for occupational and public health that will require consideration along with this expansion: (1) Legacy contamination in secondary plastics, addressing the risk of materials and substances being inherited from the previous use and carried (circulated or transferred) through into new products when reprocessed material enters its subsequent use phase (recycled, secondary plastic); and, (2) Extrusion of secondary plastics during the final stage of conventional mechanical reprocessing. Based on selected literature, we semi-quantitatively assessed nine risk scenarios and ranked them according to the comparative magnitude of risk to human health. Our analysis highlights that despite stringent regulation, industrial diligence and enforcement, occasionally small amounts of potentially hazardous substances contained in waste plastics are able to pass through established safeguards and re-enter (cascade into) the next use phase (product cycle) after being recycled. Although many of these 'inherited' chemical substances are present at concentrations unlikely to pose a serious and imminent threat, their existence may indicate a wider or possible increase in pollution dispersion. Our assessment indicates that the highest risk results from exposure to these substances during extrusion by mechanical reprocessors in contexts where only passive ventilation, dilution and dispersion are used as control measures. Our work sets the basis to inform improved future risk management protocols for a non-polluting circular economy for plastics.
Collapse
Affiliation(s)
- Ed Cook
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michiel Derks
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom; M&A Transaction Services, Deloitte, London EC4A 3HQ, United Kingdom
| | - Costas A Velis
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
12
|
Wang Z, Praetorius A. Integrating a Chemicals Perspective into the Global Plastic Treaty. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:1000-1006. [PMID: 36530847 PMCID: PMC9753957 DOI: 10.1021/acs.estlett.2c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/01/2023]
Abstract
Driven by the growing concern about plastic pollution, countries have agreed to establish a global plastic treaty addressing the full life cycle of plastics. However, while plastics are complex materials consisting of mixtures of chemicals such as additives, processing aids, and nonintentionally added substances, it is at risk that the chemical aspects of plastics may be overlooked in the forthcoming treaty. This is highly concerning because a large variety of over 10,000 chemical substances may have been used in plastic production, and many of them are known to be hazardous to human health and the environment. In this Global Perspective, we further highlight an additional, generally overlooked, but critical aspect that many chemicals in plastics hamper the technological solutions envisioned to solve some of the major plastic issues: mechanical recycling, waste-to-energy, chemical recycling, biobased plastics, biodegradable plastics, and durable plastics. Building on existing success stories, we outline three concrete recommendations on how the chemical aspects can be integrated into the global plastic treaty to ensure its effectiveness: (1) reducing the complexity of chemicals in plastics, (2) ensuring the transparency of chemicals in plastics, and (3) aligning the right incentives for a systematic transition.
Collapse
Affiliation(s)
- Zhanyun Wang
- Empa
− Swiss Federal Laboratories for Materials Science and Technology,
Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1090, GE, Netherlands
| |
Collapse
|