1
|
Chen YT, Lin TJ, Hung CY. Blood RNA-sequencing analysis in acrylamide-induced neurotoxicity and depressive symptoms in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:2316-2325. [PMID: 38152866 DOI: 10.1002/tox.24112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Acrylamide (ACR) is a by-product of the Maillard reaction, which occurs when food reacts at high temperatures. Occupational exposure is a risk factor for chronic ACR toxicity. ACR may cause neurotoxicity and depressive symptoms with high concentration in the blood; however, the underlying mechanism remains unknown. We showed the rats developed neurotoxic symptoms after being fed with ACR for 28 days, such as reduced activity and hind limb muscle weakness. We investigated whether ACR exposure causes gene expression differences by blood RNA sequencing and analyzed the differential expression of depressive symptoms-associated genes. The result indicated that IFN-γ the key regulator of neurotoxicity and depressive symptoms was induced by ACR. ACR induced the ubiquitin-mediated proteolysis pathway and JAK/STAT pathways gene expression. ACR upregulated the expression of IFN-γ, inducing neuroinflammation and neurotoxicity. ACR also upregulated the expression of JAK2, STAT1, PI3K, AKT, IκBα, UBE2D4, NF-κB, TNF-α, and iNOS in rat brain tissues and Neuro-2a cells. Thus, IFN-γ induction by ACR may induce depressive symptoms, and the ubiquitin-mediated proteolysis pathway and JAK/STAT pathways may involve in ACR neurotoxicity and depressive symptoms.
Collapse
Affiliation(s)
- Yng-Tay Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Jung Lin
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Yu Hung
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Marković Filipović J, Miler M, Kojić D, Karan J, Ivelja I, Čukuranović Kokoris J, Matavulj M. Effect of Acrylamide Treatment on Cyp2e1 Expression and Redox Status in Rat Hepatocytes. Int J Mol Sci 2022; 23:6062. [PMID: 35682741 PMCID: PMC9181519 DOI: 10.3390/ijms23116062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/16/2022] Open
Abstract
Acrylamide (AA) toxicity is associated with oxidative stress. During detoxification, AA is either coupled to gluthatione or biotransformed to glycidamide by the enzyme cytochrome P450 2E1 (CYP2E1). The aim of our study was to examine the hepatotoxicity of AA in vivo and in vitro. Thirty male Wistar rats were treated with 25 or 50 mg/kg b.w. of AA for 3 weeks. Qualitative and quantitative immunohistochemical evaluation of inducible nitric oxide synthase (iNOS), CYP2E1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 expression in liver was carried out. Bearing in mind that the liver is consisted mainly of hepatocytes, in a parallel study, we used the rat hepatoma cell line H4IIE to investigate the effects of AA at IC20 and IC50 concentrations on the redox status and the activity of CAT, SOD, and glutathione-S-transferase (GST), their gene expression, and CYP2E1 and iNOS expression. Immunohistochemically stained liver sections showed that treatment with AA25mg induced a significant decrease of CYP2E1 protein expression (p < 0.05), while treatment with AA50mg led to a significant increase of iNOS protein expression (p < 0.05). AA treatment dose-dependently elevated SOD2 protein expression (p < 0.05), while SOD1 protein expression was significantly increased only at AA50mg (p < 0.05). CAT protein expression was not significantly affected by AA treatments (p > 0.05). In AA-treated H4IIE cells, a concentration-dependent significant increase in lipid peroxidation and nitrite levels was observed (p < 0.05), while GSH content and SOD activity significantly decreased in a concentration-dependent manner (p < 0.05). AA IC50 significantly enhanced GST activity (p < 0.05). The level of mRNA significantly increased in a concentration-dependent manner for iNOS, SOD2, and CAT in AA-treated H4IIE cells (p < 0.05). AA IC50 significantly increased the transcription of SOD1, GSTA2, and GSTP1 genes (p < 0.05), while AA IC20 significantly decreased mRNA for CYP2E1 in H4IIE cells (p < 0.05). Obtained results indicate that AA treatments, both in vivo and in vitro, change hepatocytes; drug-metabolizing potential and disturb its redox status.
Collapse
Affiliation(s)
- Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Marko Miler
- Department of Cytology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia;
| | - Danijela Kojić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Jelena Karan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Ivana Ivelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Jovana Čukuranović Kokoris
- Department of Anatomy, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica 81, 18000 Niš, Serbia;
| | - Milica Matavulj
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| |
Collapse
|
3
|
Effects of Acrylamide-Induced Vasorelaxation and Neuromuscular Blockage: A Rodent Study. TOXICS 2021; 9:toxics9060117. [PMID: 34074029 PMCID: PMC8225216 DOI: 10.3390/toxics9060117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Acrylamide (ACR), which is formed during the Maillard reaction, is used in various industrial processes. ACR accumulation in humans and laboratory animals results in genotoxicity, carcinogenicity, neurotoxicity, and reproductive toxicity. In this study, we investigated the mechanisms by which ACR may induce vasorelaxation and neuromuscular toxicity. Vasorelaxation was studied using an isolated rat aortic ring model. The aortic rings were divided into the following groups: with or without endothelium, with nitric oxide synthase (NOS) inhibition, with acetylcholine receptor inhibition, and with extracellular calcium inhibition. Changes in tension were used to indicate vasorelaxation. Neuromuscular toxicity was assessed using a phrenic nerve-diaphragm model. Changes in muscle contraction stimulated by the phrenic nerve were used to indicate neuromuscular toxicity. ACR induced the vasorelaxation of phenylephrine-precontracted aortic rings, which could be significantly attenuated by NOS inhibitors. The results of the phrenic nerve-diaphragm experiments revealed that ACR reduced muscle stimulation and contraction through nicotinic acetylcholine receptor (AChR). ACR-induced vasotoxicity was regulated by NOS through the aortic endothelium. Nicotinic AChR regulated ACR-induced neuromuscular blockage.
Collapse
|
4
|
Ahmad Bainmahfouz FR, Ali SS, Al-Shali RA, El-Shitany NAEA. Vitamin E and 5-amino salicylic acid ameliorates acrylamide-induced peripheral neuropathy by inhibiting caspase-3 and inducible nitric oxide synthase immunoexpression. J Chem Neuroanat 2021; 113:101935. [PMID: 33588031 DOI: 10.1016/j.jchemneu.2021.101935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/30/2023]
Abstract
Acrylamide is a fundamental cause of accidental toxicity in humans. This study aimed to investigate the neuroprotective effect of vitamin E (Vit. E), 5-amino salicylic acid (5-ASA), and their combination against acrylamide-induced sciatic nerve toxicity. For this purpose, 25 male Wister rats were divided into 5 groups: control, acrylamide, acrylamide + Vit. E, acrylamide + 5-ASA, and acrylamide + Vit. E + 5-ASA. Food intake and body weight were assessed after 7 days. Furthermore, the gait score was also evaluated for each rat. The sciatic nerve was dissected, fixed, and processed for routine light and electron microscopic examination. Haematoxylin and eosin, osmium tetroxide for myelin sheath, and toluidine blue for semithin section were used. In addition, immunohistochemistry for caspase-3 and inducible nitric oxide synthase (iNOS) were performed. The results showed reduced food intake and body weight in acrylamide rats. Abnormal gait score was also recorded in acrylamide rats with significant improvement in Vit. E, and Vit. E + 5-ASA groups. Histologically, Vit. E and 5-ASA provided potential protection against decreased sciatic nerve axon density, disrupted myelination, and the alteration in the immunohistochemistry induced by acrylamide. Vit. E and its combination with 5-ASA provided more evident protection compared to 5-ASA alone. 5-ASA significantly decreased apoptotic cell death (caspase-3 immunoexpression) while Vit. E failed. Both Vit. E and 5-ASA significantly decreased iNOS immunoexpression in the sciatic nerve, where 5-ASA was superior to Vit. E. These findings concluded that both Vit. E and 5-ASA protect against acrylamide-induced peripheral neuropathy through downregulation of both caspase-3 and iNOS immunoexpression.
Collapse
Affiliation(s)
- Fatmah Rais Ahmad Bainmahfouz
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Anatomy, College of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia.
| | - Soad Shaker Ali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Histology, College of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Rasha Abdulrahman Al-Shali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nagla Abd El-Aziz El-Shitany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
5
|
Kunnel SG, Subramanya S, Satapathy P, Sahoo I, Zameer F. Acrylamide Induced Toxicity and the Propensity of Phytochemicals in Amelioration: A Review. Cent Nerv Syst Agents Med Chem 2020; 19:100-113. [PMID: 30734688 DOI: 10.2174/1871524919666190207160236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Acrylamide is widely found in baked and fried foods, produced in large amount in industries and is a prime component in toxicity. This review highlights various toxicities that are induced due to acrylamide, its proposed mode of action including oxidative stress cascades and ameliorative mechanisms using phytochemicals. Acrylamide formation, the mechanism of toxicity and the studies on the role of oxidative stress and mitochondrial dysfunctions are elaborated in this paper. The various types of toxicities caused by Acrylamide and the modulation studies using phytochemicals that are carried out on various type of toxicity like neurotoxicity, hepatotoxicity, cardiotoxicity, immune system, and skeletal system, as well as embryos have been explored. Lacunae of studies include the need to explore methods for reducing the formation of acrylamide in food while cooking and also better modulators for alleviating the toxicity and associated dysfunctions along with identifying its molecular mechanisms.
Collapse
Affiliation(s)
- Shinomol George Kunnel
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Sunitha Subramanya
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Pankaj Satapathy
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| | - Ishtapran Sahoo
- Molecular Biology, Thermo Fisher Scientific, Bangalore- 560066, India
| | - Farhan Zameer
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| |
Collapse
|
6
|
YENER Y, YERLİKAYA FH. Acrylamide reduces plasma antioxidant vitamin levels in rats due to increased oxidative damage. REV NUTR 2020. [DOI: 10.1590/1678-9865202033e180232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective Acrylamide is a potentially neurotoxic and carcinogenic chemical and naturally creates during the heating process of carbohydrate-rich foods, such as potato chips and breakfast cereals. Acrylamide might be ingested by people via consuming food that contains it. Therefore, we investigated the effect of acrylamidegiven orally to male and female rats on plasma retinoic acid and α-tocopherol and serum sialic acid and malondialdehyde levels. Method A total of 50 Wistar rats were used (25 female and 25 male, three-four weeks old). The rats of each sex were given 2 and 5mg/kg/day acrylamide via drinking water for 90 days. At the end of the treatment, the animals were euthanized by cervical dislocation. Blood specimens were collected through cardiac puncture, and serum and plasma samples were analysed using the high-performance liquid chromatography technique with a Ultraviolet detector. Results The analysis of the plasma and serum samples revealed that serum sialic acid and malondialdehyde levels in both sexes given 5mg/kg/day acrylamide were significantly increased, and the serum sialic acid levels were higher in female rats given 2mg/kg/day acrylamide. The plasma retinoic acid and α-tocopherol levels significantly decreased in both sexes given only the highest dose. Conclusion The results show that acrylamide causes an increase in oxidative stress and leads to a decrease in the levels of retinoic acid and α-tocopherol which play a role in the defense mechanism against this stress.
Collapse
|
7
|
Routray I, Ali S. Boron inhibits apoptosis in hyperapoptosis condition: Acts by stabilizing the mitochondrial membrane and inhibiting matrix remodeling. Biochim Biophys Acta Gen Subj 2018; 1863:144-152. [PMID: 30312768 DOI: 10.1016/j.bbagen.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 11/29/2022]
Abstract
An abnormally high apoptosis has been associated with a number of clinical conditions including embryonal malformations and various pathologies such as neuronal degeneration and diabetes. In this study, boron is reported to inhibit apoptosis in hyperapoptosis conditions as demonstrated in a model of hyperapoptosis. Boron is a metalloid which is present in food in small amounts and is suggested here to inhibit apoptosis by stabilizing the mitochondrial membrane structure, thus preventing matrix remodeling and the release of cytochrome c, an apoptosis-inducer protein from the mitochondrion. The protective effect was assessed by measuring the changes in mitochondrial membrane potential, the levels of cytochrome c and downstream activation of caspase 3, besides phosphatidylserine exposure on the cell surface and DNA damage. The study has implication in clinical conditions characterized by hyperapoptosis as seen in certain embryonal malformations and various pathologies.
Collapse
Affiliation(s)
- Indusmita Routray
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
8
|
Marković J, Stošić M, Kojić D, Matavulj M. Effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in rat pancreatic endocrine cells. Acta Histochem 2018; 120:73-83. [PMID: 29224921 DOI: 10.1016/j.acthis.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023]
Abstract
Oxidative stress is one of the principle mechanism of acrylamide-induced toxicity. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to glycidamide or by direct conjugation with glutathione. Bearing in mind that up to now the effects of acrylamide on oxidative stress status and CYP2E1 level in endocrine pancreas have not been studied we performed qualitative and quantitative immunohistochemical evaluation of inducible nitric oxide synthase (iNOS), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), catalase (CAT) and CYP2E1 expression in islets of Langerhans of rats subchronically treated with 25 or 50mg/kg bw of acrylamide. Since the majority of cells (>80%) in rodent islets are beta cells, in parallel studies, we employed the Rin-5F beta cell line to examine effects of acrylamide on redox status and the activity of CAT, SOD and glutathione-S-transferase (GST), their gene expression, and CYP2E1, NF-E2 p45-related factor 2 (Nrf2) and iNOS expression. Immunohistochemically stained pancreatic sections revealed that acrylamide induced increase of iNOS and decrease of CYP2E1 protein expression, while expression of antioxidant enzymes was not significantly affected by acrylamide in islets of Langerhans. Analysis of Mallory-Azan stained pancreatic sections revealed increased diameter of blood vessels lumen in pancreatic islets of acrylamide-treated rats. Increase in the GST activity, lipid peroxidation and nitrite level, and decrease in GSH content, CAT and SOD activities was observed in acrylamide-exposed Rin-5F cells. Level of mRNA was increased for iNOS, SOD1 and SOD2, and decreased for GSTP1, Nrf2 and CYP2E1 in acrylamide-treated Rin-5F cells. This is the first report of the effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in pancreatic endocrine cells.
Collapse
|
9
|
Shi J, Fu Y, Zhao XH. Effects of Maillard-type caseinate glycation on the preventive action of caseinate digests in acrylamide-induced intestinal barrier dysfunction in IEC-6 cells. RSC Adv 2018; 8:38036-38046. [PMID: 35558620 PMCID: PMC9089819 DOI: 10.1039/c8ra08103d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023] Open
Abstract
Dietary acrylamide has attracted widespread concern due to its toxic effects; however, its adverse impact on the intestines is less assessed. Protein glycation of the Maillard-type is widely used for property modification, but its potential effect on preventive efficacy of protein digest against the acrylamide-induced intestinal barrier dysfunction is quite unknown. Caseinate was thus glycated with lactose. Two tryptic digests from the glycated caseinate and untreated caseinate (namely GCN digest and CN digest) were then assessed for their protective effects against acrylamide-induced intestinal barrier dysfunction in the IEC-6 cell model. The results showed that acrylamide at 1.25–10 mmol L−1 dose-dependently had cytotoxic effects on IEC-6 cells, leading to decreased cell viability and increased lactate dehydrogenase release. Acrylamide also brought about barrier dysfunction, including decreased trans-epithelial electrical resistance (TEER) value and increased epithelial permeability. However, the two digests at 12.5–100 μg mL−1 could alleviate this dysfunction via enhancing cell viability by 70.2–83.9%, partly restoring TEER values, and decreasing epithelial permeability from 100% to 76.6–94.1%. The two digests at 25 μg mL−1 strengthened the tight junctions via increasing tight junction proteins ZO-1, occludin, and claudin-1 expression by 11.5–68.6%. However, the results also suggested that the GCN digest always showed lower protective efficacy than the CN digest in the cells. It is concluded that Maillard-type caseinate glycation with lactose endows the resultant tryptic digest with impaired preventive effect against acrylamide-induced intestinal barrier dysfunction, highlighting another adverse effect of the Maillard reaction on food proteins. Glycated caseinate digest of the Maillard-type has lower protective action than caseinate digest against acrylamide-induced barrier dysfunction in IEC-6 cells.![]()
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Yu Fu
- Department of Food Science
- Faculty of Science
- University of Copenhagen
- Frederiksberg 1958
- Denmark
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| |
Collapse
|
10
|
Hogervorst JGF, van den Brandt PA, Godschalk RWL, van Schooten FJ, Schouten LJ. The influence of single nucleotide polymorphisms on the association between dietary acrylamide intake and endometrial cancer risk. Sci Rep 2016; 6:34902. [PMID: 27713515 PMCID: PMC5054678 DOI: 10.1038/srep34902] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
It is unclear whether the association between dietary acrylamide intake and endometrial cancer risk as observed in some epidemiological studies reflects a causal relationship. We aimed at clarifying the causality by analyzing acrylamide-gene interactions for endometrial cancer risk. The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline, a random subcohort of 2589 women was selected for a case cohort analysis approach. Acrylamide intake of subcohort members and endometrial cancer cases (n = 315) was assessed with a food frequency questionnaire. Single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism, sex steroid systems, oxidative stress and DNA repair were assessed through a MassARRAY iPLEX Platform. Interaction between acrylamide and SNPs was assessed with Cox proportional hazards analysis, based on 11.3 years of follow-up. Among the results for 57 SNPs and 2 gene deletions, there were no statistically significant interactions after adjustment for multiple testing. However, there were nominally statistically significant interactions for SNPs in acrylamide-metabolizing enzymes: CYP2E1 (rs915906 and rs2480258) and the deletions of GSTM1 and GSTT1. Although in need of confirmation, the interactions between acrylamide intake and CYP2E1 SNPs contribute to the evidence for a causal relationship between acrylamide and endometrial cancer risk.
Collapse
Affiliation(s)
- Janneke G F Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Roger W L Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
11
|
|
12
|
El-Mehi AE, El-Sherif NM. Influence of acrylamide on the gastric mucosa of adult albino rats and the possible protective role of rosemary. Tissue Cell 2015; 47:273-83. [DOI: 10.1016/j.tice.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
13
|
The effect of biological (yeast) treatment conditions on acrylamide formation in deep-fried potatoes. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0073-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Mitigation of acrylamide-induced behavioral deficits, oxidative impairments and neurotoxicity by oral supplements of geraniol (a monoterpene) in a rat model. Chem Biol Interact 2014; 223:27-37. [DOI: 10.1016/j.cbi.2014.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/06/2014] [Accepted: 08/28/2014] [Indexed: 01/09/2023]
|
15
|
Prasad SN. Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:7-16. [PMID: 24231732 DOI: 10.1016/j.jinsphys.2013.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Chronic exposure of acrylamide (ACR) leads to neuronal damage in both experimental animals and humans. The primary focus of this study was to assess the ameliorative effect of geraniol, (a natural monoterpene) against ACR-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a Drosophila model and compare its efficacy to that of curcumin, a spice active principle with pleiotropic biological activity. Adult male flies (8-10 days) were exposed (7 days) to ACR (5 mM) with or without geraniol and curcumin (5-10 μM) in the medium. Both phytoconstituents significantly reduced the incidence of ACR-induced mortality, rescued the locomotor phenotype and alleviated the enhanced levels of oxidative stress markers in head/body regions. The levels of reduced glutathione (GSH) and total thiols (TSH) resulting from ACR exposure was also restored with concomitant elevation in the activities of detoxifying enzymes. Interestingly, ACR induced mitochondrial dysfunctions (MTT reduction, activities of SDH and citrate synthase enzymes) were alleviated by both phytoconstituents. While ACR elevated the activity of acetylcholinesterase in head/body regions, marked diminution in enzyme activity ensued with co-exposure to phytoconstituents suggesting their potency to mitigate cholinergic function. Furthermore, phytoconstituents also restored the dopamine levels in head/body regions. The neuroprotective effect of geraniol was comparable to curcumin in terms of phenotypic and biochemical markers. Based on our evidences in fly model we hypothesise that geraniol possess significant neuromodulatory propensity and may be exploited for therapeutic application in human pathophysiology associated with neuropathy. However, the precise mechanism/s by which geraniol offers neuroprotection needs to be investigated in appropriate neuronal cell models.
Collapse
Affiliation(s)
- Sathya N Prasad
- Department of Biochemistry and Nutrition, CSIR- Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| |
Collapse
|
16
|
Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence. Neurochem Res 2012; 38:330-45. [PMID: 23161090 DOI: 10.1007/s11064-012-0924-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/18/2012] [Accepted: 11/08/2012] [Indexed: 12/30/2022]
Abstract
The primary objective of this investigation was to assess the neuroprotective efficacy of spice active principles namely Eugenol (Eug) and isoeugenol (IE) in an acrylamide (ACR) neuropathy model in rats. In the present study, ACR administration (50 mg/kg bw, i.p. 3 times/week) for 5 weeks to growing rats caused typical symptoms of neuropathy. We found that treatment of ACR rats with spice active principles (10 mg/kg bw, for 5 weeks) caused marked improvement in gait score and responses in a battery of behavioral tests. Terminally, both spice active principles markedly attenuated ACR-induced markers of oxidative stress viz., reactive oxygen species (ROS), malondialdehyde (MDA) and nitric oxide (NO) in sciatic nerve (SN) as well as brain regions (cortex Ct, cerebellum Cb). Treatment with Eug restored the reduced glutathione levels in SN and brain regions. Interestingly, both spice active principles effectively diminished ACR-induced elevation in cytosolic calcium levels and acetylcholinesterase activity in SN and Ct. Further, the diminished activity of ATPase among ACR rats was enhanced in SN and restored in brain regions. Furthermore, Eug treatment significantly offset ACR-induced depletion in dopamine levels in brain regions. Collectively our findings suggest the propensity of these spice active principles to attenuate ACR-induced neuropathy. Further studies are necessary to understand the precise molecular mechanism/s by which these spice active principles attenuate neuropathy. Nevertheless, our data clearly demonstrate the beneficial effects of spice active principles in ACR-induced neuropathy in rats and suggest their possible therapeutic usage as an adjuvant in the management of other forms of neuropathy in humans.
Collapse
|
17
|
Medeiros Vinci R, Mestdagh F, De Meulenaer B. Acrylamide formation in fried potato products – Present and future, a critical review on mitigation strategies. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.08.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Prasad SN, Muralidhara. Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: relevance to neuropathy. Neurotoxicology 2012; 33:1254-64. [PMID: 22841601 DOI: 10.1016/j.neuro.2012.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Acrylamide (ACR) intoxication in its monomeric form leads to neuronal damage in both experimental animals and humans. Oxidative stress is one of the principle mechanisms related to the neurotoxicity of ACR exposure. Hence, the present study aimed to recapitulate the potential of ACR to cause oxidative stress and neurotoxic effects in Drosophila melanogaster. Exposure of adult male flies (Oregon K strain) to ACR (1-10 mM, 7 d) in the diet resulted in a concentration and time dependent mortality, while the survivors exhibited significant locomotor deficits. Further, ACR exposure (1-5 mM, 3 d) caused robust oxidative stress as evidenced by markedly elevated levels of reactive oxygen species and hypdroperoxides in head/body regions. Enhanced lipid peroxidation, perturbations in the activities of antioxidant enzymes accompanied with depletion of reduced glutathione levels in head region at high concentrations suggested induction of oxidative stress. Further, marked diminution in the activities of complexes I-III, Succinic dehydrogenase, with concomitant reduction in MTT suggested the propensity of ACR to impair mitochondrial function. Furthermore, ACR-induced neurotoxic effects were discernible in terms of diminished ATPase activity, enhanced activity of acetylcholinesterase and dopamine depletion. In a satellite study, employing a co-exposure paradigm, we tested the propensity of spice actives namely eugenol (EU) and isoeugenol (IE) to ameliorate ACR-induced neurotoxicity. EU/IE enriched diet offered marked protection against ACR-induced mortality, locomotor dysfunctions and oxidative stress. Furthermore, the spice actives prevented the depletion of reduced GSH levels, maintained the activity of AChE enzyme and dopamine levels in head region. Collectively, these findings clearly demonstrate that ACR induced neurotoxicity in Drosophila may be mediated through oxidative stress mechanisms and the potential of spice actives to abrogate the condition. These data suggest that Drosophila may serve as a suitable model to understand the possible mechanism/s associated with ACR associated neuropathy.
Collapse
Affiliation(s)
- Sathya N Prasad
- Department of Biochemistry and Nutrition, CSIR - Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| | | |
Collapse
|