1
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Teixeira R, Stefanelli A, Pilon A, Warmers R, Fontrodona X, Romero I, Costa PJ, Villa de Brito MJ, Hudec X, Pirker C, Türck S, Antunes AMM, Kowol CR, Ott I, Brozovic A, Sombke A, Eckhard M, Tomaz AI, Heffeter P, Valente A. Paraptotic Cell Death as an Unprecedented Mode of Action Observed for New Bipyridine-Silver(I) Compounds Bearing Phosphane Coligands. J Med Chem 2024; 67:6081-6098. [PMID: 38401050 PMCID: PMC11056982 DOI: 10.1021/acs.jmedchem.3c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
In this work, we investigated the anticancer activity of several novel silver(I) 2,2'-bipyridine complexes containing either triphenylphosphane (PPh3) or 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All compounds were characterized by diverse analytical methods including ESI-MS spectrometry; NMR, UV-vis, and FTIR spectroscopies; and elemental analysis. Moreover, several compounds were also studied by X-ray single-crystal diffraction. Subsequently, the compounds were investigated for their anticancer activity against drug-resistant and -sensitive cancer cells. Noteworthily, neither carboplatin and oxaliplatin resistance nor p53 deletion impacted on their anticancer efficacy. MES-OV cells displayed exceptional hypersensitivity to the dppe-containing drugs. This effect was not based on thioredoxin reductase inhibition, enhanced drug uptake, or apoptosis induction. In contrast, dppe silver drugs induced paraptosis, a novel recently described form of programmed cell death. Together with the good tumor specificity of this compound's class, this work suggests that dppe-containing silver complexes could be interesting drug candidates for the treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ricardo
G. Teixeira
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Alessia Stefanelli
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Adhan Pilon
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rebecca Warmers
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Xavier Fontrodona
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, Girona 17071, Spain
| | - Isabel Romero
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, Girona 17071, Spain
| | - Paulo J. Costa
- BioISI
- Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Maria J. Villa de Brito
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Xenia Hudec
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Christine Pirker
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Sebastian Türck
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig 38106, Germany
| | - Alexandra M. M. Antunes
- Centro de
Química Estrutural (CQE), Institute of Molecular Sciences,
Departamento de Engenharia Química, Instituto Superior Técnico
(IST), Universidade de Lisboa, Av Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Christian R. Kowol
- Institute
of Inorganic Chemistry, Faculty of Chemistry,
University of Vienna, Waehringerstrasse 42, Vienna 1090, Austria
| | - Ingo Ott
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig 38106, Germany
| | - Anamaria Brozovic
- Division
of Molecular Biology, Ruđer Bošković
Institute, Bijenička
cesta 54,Zagreb 10000, Croatia
| | - Andy Sombke
- Center
for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna 1090, Austria
| | - Margret Eckhard
- Center
for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna 1090, Austria
| | - Ana Isabel Tomaz
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Petra Heffeter
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Andreia Valente
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| |
Collapse
|
3
|
Al Nasr IS, Koko WS, Khan TA, Gürbüz N, Özdemir I, Hamdi N. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules 2023; 28:molecules28031359. [PMID: 36771026 PMCID: PMC9921063 DOI: 10.3390/molecules28031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
A series of [RuCl2(p-cymene)(NHC)] complexes were obtained by reacting [RuCl2(p-cymene)]2 with in situ generated Ag-N-heterocyclic carbene (NHC) complexes. The structure of the obtained complexes was determined by the appropriate spectroscopy and elemental analysis. In addition, we evaluated the biological activities of these compounds as antienzymatic, antioxidant, antibacterial, anticancer, and antiparasitic agents. The results revealed that complexes 3b and 3d were the most potent inhibitors against AchE with IC50 values of 2.52 and 5.06 μM mL-1. Additionally, 3d proved very good antimicrobial activity against all examined microorganisms with IZ (inhibition zone) over 25 mm and MIC (minimum inhibitory concentration) < 4 µM. Additionally, the ligand 2a and its corresponding ruthenium (II) complex 3a had good cytotoxic activity against both cancer cells HCT-116 and HepG-2, with IC50 values of (7.76 and 11.76) and (4.12 and 9.21) μM mL-1, respectively. Evaluation of the antiparasitic activity of these complexes against Leishmania major promastigotes and Toxoplasma gondii showed that ruthenium complexes were more potent than the free ligand, with an IC50 values less than 1.5 μM mL-1. However, 3d was found the best one with SI (selectivity index) values greater than 5 so it seems to be the best candidate for antileishmanial drug discovery program, and much future research are recommended for mode of action and in vivo evaluation. In general, Ru-NHC complexes are the most effective against L. major promastigotes.
Collapse
Affiliation(s)
- Ibrahim S. Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts at ArRass, Qassim University, Ar Rass 51921, Saudi Arabia
- Correspondence: ; Tel.: +966-556394839
| |
Collapse
|
4
|
The Antitumor and Toxicity Effects of Ruthenium(II) Complexes on Heterotopic Murine Colon Carcinoma Model. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
The aim of the present study was to examine the antitumor and toxicity effects of ruthenium(II) complexes, [Ru(Cltpy)(en)Cl][Cl] (Ru-1) and [Ru(Cl-tpy)(dach)Cl][Cl] (Ru-2) on heterotopic murine colon carcinoma model.
For tumor induction, 1×106 CT26 cells suspended in 100 μl of DMEM were injected subcutaneously into flank of male BALB/c mice. Treatment groups were as follows: Ru-1, Ru-2, oxaliplatin and control (saline). The intraperitoneal administration of the tested complexes began on 6th day after CT26 cells inoculation. Each complex was administered at dose of 5 mg/kg, twice weekly, four doses in total. To assess toxicity, serum values of urea, creatinine, AST and ALT were determined and histopathological analysis of organs and tumor were performed. In order to assess the effects of Ru(II) complexes on markers of oxidative stress and antioxidant defense system, we determined the TBARS, GSH, SOD and CAT in the homogenate of tumor, heart, liver, lungs and kidney tissues.
The findings indicate that Ru-1 and Ru-2 exerts equal or better antitumor activity in comparison with oxaliplatin, but with pronounced toxic effects such as reduced survival rate, cardiotoxicity, nephrotoxicity and hepatotoxicity. The increased index of lipid peroxidation in the tissues of the kidneys and heart, but decreased in tumor tissue, after Ru(II) complexes administration, indicates the importance of the induction of oxidative stress as a possible mechanism of nephrotoxicity and cardiotoxicity, but not the mechanism by which they realize antitumor activity.
Additional studies are needed to elucidate the mechanism of antitumor activity and toxicity of the Ru(II) complexes.
Collapse
|
5
|
Nandi PG, Jadi PK, Das K, Prathapa SJ, Mandal BB, Kumar A. Synthesis of NNN Chiral Ruthenium Complexes and Their Cytotoxicity Studies. Inorg Chem 2021; 60:7422-7432. [PMID: 33909427 DOI: 10.1021/acs.inorgchem.1c00698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The synthesis and characterization of chiral pincer-ruthenium complexes of the type (R2NNN)RuCl2 (PPh3) (R = 3-methylbutyl and 3,3-dimethylbutyl) is reported here. The cytotoxicity studies of these complexes were studied and compared with the corresponding activity of achiral complexes. The cytotoxic effect of pincer-ruthenium complexes on human dermal fibroblasts and human tongue carcinoma cells assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed an inhibition of normal and cancer cell growth in a dose-dependent manner. Intracellular reactive oxygen species (ROS) level measurement, lactate dehydrogenase assay, DNA fragmentation, and necrosis studies revealed that treatment with pincer-ruthenium complexes induced a redox imbalance in SAS cells by upregulating ROS generation and caused necrotic cell death by disrupting the cellular membrane integrity.
Collapse
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
6
|
Mihajlovic K, Milosavljevic I, Jeremic J, Savic M, Sretenovic J, Srejovic I, Zivkovic V, Jovicic N, Paunovic M, Bolevich S, Jakovljevic V, Novokmet S. Redox and apoptotic potential of novel ruthenium complexes in rat blood and heart. Can J Physiol Pharmacol 2021; 99:207-217. [PMID: 32976727 DOI: 10.1139/cjpp-2020-0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ruthenium(II) complexes offer the potential for lower toxicity compared with platinum(II) complexes. Our study aimed to compare cardiotoxicity of [Ru(Cl-tpy)(en)Cl][Cl], [Ru(Cl-tpy)(dach)Cl][Cl], [Ru(Cl-tpy)(bpy)Cl][Cl], cisplatin, and saline through assessment of redox status and relative expression of apoptosis-related genes. A total of 40 Wistar albino rats were divided into five groups. Ruthenium groups received a single dose of complexes intraperitoneally (4 mg/kg/week) for a 4-week period; cisplatin group received cisplatin (4 mg/kg/week) and control group received saline (4 mL/kg/week) in the same manner as ruthenium groups. In collected blood and heart tissue samples, spectrophotometric determination of oxidative stress biomarkers was performed. The relative expression of apoptosis-related genes (Bcl-2, Bax, and caspase-3) in hearts was examined by real-time polymerase chain reaction. Our results showed that systemic and cardiac pro-oxidative markers (thiobarbituric acid reactive substances and nitrite) were significantly lower in ruthenium groups compared with cisplatin group, while concentrations of antioxidative parameters (catalase, superoxide dismutase, and oxidized glutathione) were significantly higher. Ruthenium administration led to significantly lower gene expression of Bax and caspase-3 compared with cisplatin-treated rats, while Bcl-2 remained unchanged. Applied ruthenium complexes have less pronounced potential for induction of oxidative stress-mediated cardiotoxicity compared with cisplatin. These findings may help for future studies that should clarify the mechanisms of cardiotoxicity of ruthenium-based metallodrugs.
Collapse
Affiliation(s)
- Katarina Mihajlovic
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Isidora Milosavljevic
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Jeremic
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Maja Savic
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Sretenovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Faculty of Medical Sciences, Department of Histology and embryology, University of Kragujevac, Kragujevac, Serbia
| | - Milica Paunovic
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Vladimir Jakovljevic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Slobodan Novokmet
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
7
|
Onar G, Gürses C, Karataş MO, Balcıoğlu S, Akbay N, Özdemir N, Ateş B, Alıcı B. Palladium(II) and ruthenium(II) complexes of benzotriazole functionalized N-heterocyclic carbenes: Cytotoxicity, antimicrobial, and DNA interaction studies. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Curcumin protects heart tissue against irinotecan-induced damage in terms of cytokine level alterations, oxidative stress, and histological damage in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:783-791. [DOI: 10.1007/s00210-018-1495-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 01/02/2023]
|
9
|
Ruthenium(II)-N-alkyl phenothiazine complexes as potential anticancer agents. J Biol Inorg Chem 2018; 23:689-704. [DOI: 10.1007/s00775-018-1560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/08/2018] [Indexed: 12/20/2022]
|
10
|
Allison SJ, Sadiq M, Baronou E, Cooper PA, Dunnill C, Georgopoulos NT, Latif A, Shepherd S, Shnyder SD, Stratford IJ, Wheelhouse RT, Willans CE, Phillips RM. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands. Cancer Lett 2017; 403:98-107. [PMID: 28624622 DOI: 10.1016/j.canlet.2017.04.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/06/2017] [Accepted: 04/29/2017] [Indexed: 12/16/2022]
Abstract
Organometallic complexes offer the prospect of targeting multiple pathways that are important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and induction of reactive oxygen species. DNA damage induction was consistent with cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less active against non-cancer cells and shows activity in vivo in a loco-regional setting.
Collapse
Affiliation(s)
- Simon J Allison
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Maria Sadiq
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Patricia A Cooper
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Chris Dunnill
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Nikolaos T Georgopoulos
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Ayşe Latif
- Division of Pharmacy and Optometry, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Samantha Shepherd
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Steve D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Ian J Stratford
- Division of Pharmacy and Optometry, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | - Roger M Phillips
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
11
|
Farooq M, Taha NA, Butorac RR, Evans DA, Elzatahry AA, Elsayed EA, Wadaan MAM, Al-Deyab SS, Cowley AH. Biological Screening of Newly Synthesized BIAN N-Heterocyclic Gold Carbene Complexes in Zebrafish Embryos. Int J Mol Sci 2015; 16:24718-31. [PMID: 26501273 PMCID: PMC4632773 DOI: 10.3390/ijms161024718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 11/16/2022] Open
Abstract
N-Heterocyclic carbene (NHC) metal complexes possess diverse biological activities but have yet to be extensively explored as potential chemotherapeutic agents. We have previously reported the synthesis of a new class of NHC metal complexes N-heterocyclic with acetate [IPr(BIAN)AuOAc] and chloride [IPr(BIAN)AuCl] ligands. In the experiments reported herein, the zebrafish embryos were exposed to serial dilutions of each of these complexes for 10-12 h. One hundred percent mortality was observed at concentrations≥50 µM. At sub-lethal concentrations (10-30 µM), both compounds influenced zebrafish embryonic development. However, quite diverse categories of abnormalities were found in exposed embryos with each compound. Severe brain deformation and notochord degeneration were evident in the case of [IPr(BIAN)AuOAc]. The zebrafish embryos treated with [IPr(BIAN)AuCl] exhibited stunted growth and consequently had smaller body sizes. A depletion of 30%-40% glutathione was detected in the treated embryos, which could account for one of the possible mechanism of neurotoxicity. The fact that these compounds are capable of both affecting the growth and also compromising antioxidant systems by elevating intracellular ROS production implies that they could play an important role as a new breed of therapeutic molecules.
Collapse
Affiliation(s)
- Muhammad Farooq
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Nael Abu Taha
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rachel R Butorac
- Department of Chemistry, the University of Texas at Austin, Austin, TX 78712, USA.
| | - Daniel Anthony Evans
- Department of Chemistry, the University of Texas at Austin, Austin, TX 78712, USA.
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Elsayed Ahmed Elsayed
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Natural and Microbial Products Department, National Research Centre, Dokki, Cairo 12311, Egypt.
| | - Mohammad A M Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Salem S Al-Deyab
- Petrochemical Research Chair, Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Alan H Cowley
- Department of Chemistry, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Hackenberg F, Müller-Bunz H, Smith R, Streciwilk W, Zhu X, Tacke M. Novel Ruthenium(II) and Gold(I) NHC Complexes: Synthesis, Characterization, and Evaluation of Their Anticancer Properties. Organometallics 2013. [DOI: 10.1021/om400819p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Frauke Hackenberg
- UCD School
of Chemistry and
Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- UCD School
of Chemistry and
Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Raymond Smith
- UCD School
of Chemistry and
Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wojciech Streciwilk
- UCD School
of Chemistry and
Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Xiangming Zhu
- UCD School
of Chemistry and
Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthias Tacke
- UCD School
of Chemistry and
Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Illán-Cabeza NA, García-García AR, Martínez-Martos JM, Ramírez-Expósito MJ, Peña-Ruiz T, Moreno-Carretero MN. A potential antitumor agent, (6-amino-1-methyl-5-nitrosouracilato-N3)-triphenylphosphine-gold(I): structural studies and in vivo biological effects against experimental glioma. Eur J Med Chem 2013; 64:260-72. [PMID: 23644209 DOI: 10.1016/j.ejmech.2013.03.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/29/2013] [Accepted: 03/30/2013] [Indexed: 02/07/2023]
Abstract
The synthesis and molecular and supramolecular structures of the compound (6-amino-1-methyl-5-nitrosouracilato-N3)-triphenylphosphine-gold(I) with interesting abilities to inhibit tumor growth in an animal model of experimental glioma are reported. Thus, its antitumor properties, effects on both enzyme and non-enzyme antioxidant defense systems and the response of several biochemical biomarkers have been analyzed. After seven days of treatment, the gold compound decreased the tumor growth to ca. one-tenth and reduced oxidative stress biomarkers (thiobarbituric acid-reactive substances (TBARS) and protein oxidation levels) compared to animals treated with the vehicle. Also, gold compound maintained non-enzyme antioxidant defense systems as in non-tumor animals and increased enzyme antioxidant defenses, such as superoxide dismutase and glutathione peroxidase activities, and decreased catalase activity. Analysis of serum levels of electrolytes, nitrogenous compounds, glucose, lipids, total protein, albumin, transaminases and alkaline phosphatase indicated that gold compound treatment showed few adverse effects, while effectively inhibiting tumor growth through mechanisms that involved endogenous antioxidant defenses.
Collapse
|
14
|
Liu W, Gust R. Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem Soc Rev 2013; 42:755-73. [PMID: 23147001 DOI: 10.1039/c2cs35314h] [Citation(s) in RCA: 586] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wukun Liu
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str 2+4, 14195 Berlin, Germany
| | | |
Collapse
|
15
|
Oehninger L, Rubbiani R, Ott I. N-Heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans 2012; 42:3269-84. [PMID: 23223752 DOI: 10.1039/c2dt32617e] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal complexes with N-heterocyclic carbene (NHC) ligands are widely used in chemistry due to their catalytic properties and applied for olefin metathesis among other reactions. The enhanced application of this type of organometallics has over the last few years also triggered a steadily increasing number of studies in the fields of medicinal chemistry, which take advantage of the fascinating chemical properties of these complexes. In fact it has been demonstrated that metal NHC complexes can be used to develop highly efficient metal based drugs with possible applications in the treatment of cancer or infectious diseases. Complexes of silver and gold have been biologically evaluated most frequently but also platinum or other transition metals have demonstrated promising biological properties.
Collapse
Affiliation(s)
- Luciano Oehninger
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
16
|
Oehninger L, Stefanopoulou M, Alborzinia H, Schur J, Ludewig S, Namikawa K, Muñoz-Castro A, Köster RW, Baumann K, Wölfl S, Sheldrick WS, Ott I. Evaluation of arene ruthenium(II) N-heterocyclic carbene complexes as organometallics interacting with thiol and selenol containing biomolecules. Dalton Trans 2012; 42:1657-66. [PMID: 23149817 DOI: 10.1039/c2dt32319b] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal complexes with N-heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry and are now increasingly considered for the development of new chemical tools and metal based drugs. Ruthenium complexes of the type (p-cymene)(NHC)RuCl(2) interacted with biologically relevant thiols and selenols, which resulted in the inhibition of enzymes such as thioredoxin reductase or cathepsin B. Pronounced antiproliferative effects could be obtained provided that an appropriate cellular uptake was achieved. Inhibition of tumor cell growth was accompanied by a perturbation of metabolic parameters such as cellular respiration.
Collapse
Affiliation(s)
- Luciano Oehninger
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|