1
|
Tao ZS, Hu XF, Wu XJ, Wang ZY, Shen CL. Protocatechualdehyde inhibits iron overload-induced bone loss by inhibiting inflammation and oxidative stress in senile rats. Int Immunopharmacol 2024; 141:113016. [PMID: 39182269 DOI: 10.1016/j.intimp.2024.113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The accumulating evidence has made it clear that iron overload is a crucial mechanism in bone loss. Protocatechualdehyde (PCA) has also been used to prevent osteoporosis in recent years. Whether PCA can reverse the harmful effects of iron overload on bone mass in aged rats is still unknown. Therefore, this study aimed to assess the role of PCA in iron overload-induced bone loss in senile rats. In the aged rat model, we observed that iron overload affects bone metabolism and bone remodeling, manifested by bone loss and decreased bone mineral density. The administration of PCA effectively mitigated the detrimental effects caused by iron overload, and concomitant reduction in MDA serum levels and elevation of SOD were noted. In addition, PCA-treated rats were observed to have significantly increased bone mass and elevated expression of SIRT3,BMP2,SOD2 and reduced expression of TNF-α in bone tissue. We also observed that PCA was able to reduce oxidative stress and inflammation and restore the imbalance in bone metabolism. When MC3T3-E1 and RAW264.7 cells induced osteoblast and osteoclasts differentiation, PCA intervention could significantly recover the restriction of osteogenic differentiation and up-regulation of osteoclast differentiation treated by iron overload. Further, by detecting changes in ROS, SOD, MDA, expression of SIRT3 and mitochondrial membrane potentials, we confirm that the damage caused to cells by iron overload is associated with decreased SIRT3 activity, and that 3-TYP have similar effects on oxidative stress caused by FAC. In conclusion, PCA can resist iron overload-induced bone damage by improving SIRT3 activity, anti-inflammatory and anti-oxidative stress.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei 230022, Anhui, PR China
| | - Xu-Feng Hu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Zheng-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China.
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei 230022, Anhui, PR China.
| |
Collapse
|
2
|
Mahamoud R, Bowman DT, Ward WE, Mangal V. Assessing the stability of polyphenol content in red rooibos herbal tea using traditional methods and high-resolution mass spectrometry: Implications for studying dietary interventions in preclinical rodent studies. Food Chem 2024; 448:139068. [PMID: 38608397 DOI: 10.1016/j.foodchem.2024.139068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
Preclinical rodent models are used to examine the relationship between tea consumption and bone health, where tea is available for rodents and typically replaced weekly. However, the extent to which the tea polyphenols change over time remains uncertain, despite its importance in preparing tea during preclinical rodent trials. Using an untargeted molecular approach, we applied a liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOFMS) system to assess the molecular profile of red rooibos teas throughout a 6-day aging period. We found a significant, 3-fold decrease of polyphenols involved in bone metabolism, including m-coumaric acid, catechin derivatives and courmaroyl tartaric acid over 6 days, likely due to photochemical decomposition and autooxidation within tea extracts. Using a novel untargeted workflow for polyphenol characterization, our findings revealed the complexity of polyphenols in red rooibos teas that can inform the evidence-based decisions of how often to change teas during in vivo rodent trials.
Collapse
Affiliation(s)
| | - David T Bowman
- Brock-Niagara Validation, Prototyping and Manufacturing Institute, Canada
| | - Wendy E Ward
- Brock University, Department of Kinesiology, Canada; Brock-Niagara Validation, Prototyping and Manufacturing Institute, Canada
| | - Vaughn Mangal
- Brock University, Department of Chemistry, Canada; Brock-Niagara Validation, Prototyping and Manufacturing Institute, Canada.
| |
Collapse
|
3
|
Kelidari M, Abedi F, Hayes AW, Jomehzadeh V, Karimi G. The protective effects of protocatechuic acid against natural and chemical toxicants: cellular and molecular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5597-5616. [PMID: 38607443 DOI: 10.1007/s00210-024-03072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Protocatechuic acid (PCA) is a water-soluble polyphenol compound that is extracted from certain fruits and plants or obtained from glucose fermentation. Several in vivo and in vitro studies have determined that PCA has protective effects against the toxicity of natural and chemical toxicants. We searched these articles in PubMed, Google Scholar, and Scopus with appropriate keywords from inception up to August 2023. Forty-nine studies were found about protective effects of PCA against drug toxicity, metal toxicity, toxins, chemical toxicants, and some other miscellaneous toxicants. PCA indicates these protective effects by suppression of oxidative stress, inflammation, and apoptosis. PCA reduces reactive oxygen/nitrogen species (RONS) and enhances the level of antioxidant parameters mainly through the activation of the Nrf-2 signaling pathway. PCA also decreases the levels of inflammatory mediators via downregulating the TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. In addition, PCA inhibits apoptosis by lowering the expression of Bax, caspase-3, and caspase-9 along with enhancing the level of the antiapoptotic protein Bcl-2. Further evaluation, especially in humans, is necessary to confirm PCA as a potential therapeutic approach to intervene in such toxicities.
Collapse
Affiliation(s)
- Mahdieh Kelidari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Abedi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Vahid Jomehzadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Shafiee F, Safaeian L, Gorbani F. Protective effects of protocatechuic acid against doxorubicin- and arsenic trioxide-induced toxicity in cardiomyocytes. Res Pharm Sci 2023; 18:149-158. [PMID: 36873272 PMCID: PMC9976056 DOI: 10.4103/1735-5362.367794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Background and purpose Some chemotherapeutic drugs are associated with an increased risk of cardiotoxicity in patients. Protocatechuic acid (PCA) is a phenolic acid with valuable cardiovascular, chemo-preventive, and anticancer activities. Recent studies have shown the cardioprotective effects of PCA in several pathological conditions. This investigation aimed to assess the possible protective effects of PCA on cardiomyocytes against toxicities caused by anti-neoplastic agents, doxorubicin (DOX), and arsenic trioxide (ATO). Experimental approach H9C2 cells were exposed to DOX (1 μM) or ATO (35 μM) after 24 h pretreatment with PCA (1-100 μM). MTT and lactate dehydrogenase (LDH) tests were used to define cell viability or cytotoxicity. Total oxidant and antioxidant capacities were evaluated by measuring hydroperoxides and ferric-reducing antioxidant power (FRAP) levels. Expression of the TLR4 gene was also quantitatively estimated by real-time polymerase chain reaction. Findings/Results PCA showed a proliferative effect on cardiomyocytes and significantly enhanced cell viability and reduced cytotoxicity of DOX and ATO during MTT and LDH assays. Pretreatment of cardiomyocytes with PCA significantly decreased hydroperoxide levels and elevated FRAP value. Moreover, PCA meaningfully decreased TLR4 expression in DOX-and ATO-treated cardiomyocytes. Conclusions and implications In conclusion, antioxidant and cytoprotective activities were found for PCA versus toxicities caused by DOX and ATO in cardiomyocytes. However, further in vivo investigations are recommended to assess its clinical value for the prevention and treatment of cardiotoxicity induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fatemeh Gorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
5
|
TÜRKMEN NB, YÜCE H, TAŞLIDERE A, ŞAHİN Y, ÇİFTÇİ O. The Ameliorate Effects of Nerolidol on Thioasteamide-induced Oxidative Damage in Heart and Kidney Tissue. Turk J Pharm Sci 2022; 19:1-8. [DOI: 10.4274/tjps.galenos.2021.30806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Basak Turkmen N, Askin Ozek D, Taslidere A, Dogan F, Ciftci O. Beta-glucan effects on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity in liver and brain. Biotech Histochem 2022; 97:441-448. [DOI: 10.1080/10520295.2022.2025902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Nese Basak Turkmen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Dilan Askin Ozek
- Pharmacy Services Department, Kovancilar Vocational School, Firat University, Elazig, Turkey
| | - Asli Taslidere
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fatih Dogan
- Department of Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Osman Ciftci
- Department of Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
7
|
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6139308. [PMID: 34790246 PMCID: PMC8592717 DOI: 10.1155/2021/6139308] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Phenolic compounds are naturally present as secondary metabolites in plant-based sources such as fruits, vegetables, and spices. They have received considerable attention for their antioxidant, anti-inflammatory, and anti-carcinogenic properties for protection against many chronic disorders such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. They are categorized into various groups based on their chemical structure and include phenolic acids, flavonoids, curcumins, tannins, and quinolones. Their structural variations contribute to their specific beneficial effects on human health. The antioxidant property of phenolic compounds protects against oxidative stress by up-regulation of endogenous antioxidants, scavenging free radicals, and anti-apoptotic activity. Protocatechuic acid (PCA; 3,4-dihydroxy benzoic acid) and protocatechuic aldehyde (PAL; 3,4-dihydroxybenzaldehyde) are naturally occurring polyphenols found in vegetables, fruits, and herbs. PCA and PAL are the primary metabolites of anthocyanins and proanthocyanidins, which have been shown to possess pharmacological actions including antioxidant activity in vitro and in vivo. This review aims to explore the therapeutic potential of PCA and PAL by comprehensively summarizing their pharmacological properties reported to date, with an emphasis on their mechanisms of action and biological properties.
Collapse
Affiliation(s)
- Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
8
|
Doğan MF, Başak Türkmen N, Taşlıdere A, Şahin Y, Çiftçi O. The protective effects of capsaicin on oxidative damage-induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Drug Chem Toxicol 2021; 45:2463-2470. [PMID: 34308744 DOI: 10.1080/01480545.2021.1957912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study aimed to investigate the protective role of capsaicin in a rat model of 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD)-induced toxicity. Exposure to TCDD which is an environmental toxicant causes severe toxic effects in the animal and human tissues. Therefore, the potential protective effect of capsaicin in TCDD-induced organ damage was investigated in rats by measuring thiobarbituric acid reactive substances (TBARS) level, superoxide dismutase (SOD) activity, and glutathione (GSH) level in the heart, liver, and kidney tissues for oxidant/antioxidant balance. Thirty-two healthy adults (250-300 g weight and 3-4 months old) male Wistar albino rats were randomly distributed into four equal groups (n = 8): Control, CAP, TCDD, TCDD + CAP. A dose of 2 μg/kg TCDD or a dose of 25 mg/kg capsaicin were dissolved in corn oil and orally administered to the rats for 30 days. The results indicated that TCDD-induced oxidative stress by increasing the level of TBARS and by decreasing the levels of GSH, and SOD activity in the tissues of rats. However, capsaicin treatment was significantly decreased TBARS levels and was significantly increased GSH level and SOD activity (p < 0.05). In addition, capsaicin (25 mg/kg) significantly attenuated TCDD-induced histopathological alteration associated with oxidative stress in the heart, liver, and kidney tissues (p < 0.05). As capsaicin regulates oxidative imbalance and attenuates histopathological alterations in the rat tissues, it may be preventing agents in TCDD toxicity.
Collapse
Affiliation(s)
- Muhammed Fatih Doğan
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Neşe Başak Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Inonu, Malatya, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, University of Inonu, Malatya, Turkey
| | - Yasemin Şahin
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Osman Çiftçi
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| |
Collapse
|
9
|
Treatment with protocatechuic acid attenuates cisplatin-induced toxicity in the brain and liver of male Wistar rats. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Huang H, Jiang W, Hong K, Cai J, He Y, Ma X, Wu P, Lang J, Ma Y, Huang C, Yuan J. Protocatechualdehyde inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis and attenuates lipopolysaccharide-induced inflammatory osteolysis. Phytother Res 2021; 35:3821-3835. [PMID: 33778997 DOI: 10.1002/ptr.7088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Inflammatory osteolysis as a consequence of chronic bacterial infection underlies several lytic bone conditions, such as otitis media, osteomyelitis, septic arthritis, periodontitis, periprosthetic infection, and aseptic loosening of orthopedic implants. In consideration of the lack of effective preventive or treatments options against infectious osteolysis, the exploitation of novel pharmacological compounds/agents is critically required. The present study assessed the effect of protocatechualdehyde (PCA), a natural occurring polyphenolic compound with diverse biological activities including but not limited to antibacterial and antiinflammatory properties, on nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and lipopolysaccharide (LPS)-induced bone loss in vivo. In the present study, it was found that PCA potently inhibited RANKL-induced osteoclast formation, fusion, and activation toward bone resorption in a dose-dependent manner via the suppression of the ERK/c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling axis. It was further demonstrated that the in vivo administration of PCA could effectively protect mice against the deleterious effects of LPS-induced calvarial bone destruction by attenuating osteoclast formation and activity in a dose-dependent manner. Collectively, these findings provided evidence for the potential therapeutic application of PCA in the prevention and treatment of infectious osteolytic conditions, and potentially other osteoclast-mediated bone diseases.
Collapse
Affiliation(s)
- Hao Huang
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Kehua Hong
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Cai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongchao He
- Department of Orthopedics, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuming Ma
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuegang Ma
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Jiandong Yuan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
12
|
Kale S, Sarode LP, Kharat A, Ambulkar S, Prakash A, Sakharkar AJ, Ugale RR. Protocatechuic Acid Prevents Early Hour Ischemic Reperfusion Brain Damage by Restoring Imbalance of Neuronal Cell Death and Survival Proteins. J Stroke Cerebrovasc Dis 2021; 30:105507. [PMID: 33285352 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the neuroprotective effect of protocatechuic acid (PCA) on cell death/survival protein imbalance in a rat model of middle cerebral artery occlusion and reperfusion. METHODS Focal ischemia was induced by middle cerebral artery occlusion in adult male Wistar rats and confirmed by measuring infarction of brain by 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Rats were treated with vehicle or PCA at 10, 30 or 50 mg/kg dose intraperitoneally and subjected to neurological deficits or beam walk assessment at 24 h of reperfusion. Effective dose of PCA (50 mg/kg) was administered at 1, 2 and 3 h time point of post-ictus ischemia. Cellular damage and nuclear condensation was observed by haematoxylin and eosin (H and E) staining and Hoechst 33342 staining respectively. Additionally, immunohistochemical expression of caspase 3 and cAMP-response element binding protein (CREB) and their mRNA's were observed. RESULTS PCA at 30 and 50 mg/kg significantly improved behavioural performance and reduced infarction. Maximum neuroprotective effect of PCA (50 mg/kg) was found at 1 h (early hours) post-ictus ischemia along with reduction in cellular damage and nuclear condensation. PCA increased CREB protein and it's mRNA, while suppressed caspase-3 protein and mRNA at 1 h of reperfusion injury. CONCLUSION PCA exhibit the potential to prevent early hour (1h) reperfusion injury restoring balance of survival and death protein may offer a cost effective adjuvant therapy in stroke.
Collapse
Affiliation(s)
- Swapnil Kale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Amol Kharat
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Saurabh Ambulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| |
Collapse
|
13
|
Screening of endophytic fungal metabolites from Cola nitida leaves for antimicrobial activities against clinical isolates of Pseudomonas aeruginosa. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Endophytic fungi of selected Nigerian plants are important sources of bioactive products with enormous potentials for the discovery of new drug molecules for drug development. Pseudomonas aeruginosa is one of the major causes of healthcare-associated bacterial infections, leading to increased mortality and morbidity. In this study, isolated endophytic fungi from Cola nitida were screened for anti-pseudomonas properties. Endophytic fungi associated with healthy leaves of C. nitida were isolated using standard methods. Fungi were identified through their morphological, cultural and microscopic characteristics. The fungi were subjected to solid-state fermentation and secondary metabolites extracted using ethyl acetate and concentrated under vacuum. The crude extracts were screened for antimicrobial activity against clinical and laboratory strains of Pseudomonas aeruginosa using the agar diffusion method. The bioactive components of the fungal extracts were identified using High-Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) analysis. Three endophytic fungi; Acremonium sp., Aspergillus sp. and Trichophyton sp. were isolated. At 1 mg/ml, extracts of the three fungi displayed antipseudomonal activity with inhibition zone diameter ranging from 6 - 4 mm. HPLC-DAD analysis revealed the presence of compounds, such as 4-hydroxyphenyl acetate. indole-3-acetic acid, and protocatechuic acid among others in the fungal extracts. The findings in this study reveal that endophytic fungi associated with C. nitida possess promising antipseudomonal properties. This finding can open new doors for the discovery of new agents against P. aeruginosa.
Collapse
|
14
|
Guo YZ, Jiang YN, Li YF, Kurihara H, Dai Y, He RR. Clinical Prescription-Protein-Small Molecule-Disease Strategy (CPSD), A New Strategy for Chinese Medicine Development: A Case Study in Cardiovascular Diseases. Front Pharmacol 2020; 10:1564. [PMID: 32038243 PMCID: PMC6987446 DOI: 10.3389/fphar.2019.01564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 01/02/2023] Open
Abstract
Chinese medicine is a national treasure that has been passed down for thousands of years in China. According to the statistics of the World Health Organization, there are currently four billion people in the world who use Chinese medicine to treat diseases, accounting for 80% of the world's total population. However, the obscurity of its theory, its unmanageable quality, its complex compositions, and the unknown effective substances and mechanisms are great obstacles to the internationalization of Chinese medicine. Here, we propose a new strategy for the development of Chinese medicine: the clinical prescription (C)-protein (P)-small-molecule (S)-disease (D) strategy, namely the CPSD strategy. The strategy uses clinical prescriptions as the source of medicine and uses computer simulation technology to find small-molecule drugs targeting therapeutic proteins for treating specific diseases so as to deepen awareness of the value of Chinese medicine. At the same time, this article takes cardiovascular drug development as an example to introduce the application of CPSD, which will be instrumental in the further development, modernization, and internationalization of Chinese medicine.
Collapse
Affiliation(s)
- Yong-Zhi Guo
- Guangdong Province Research and Development Center for Chinese Medicine in Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying-Nan Jiang
- Guangdong Province Research and Development Center for Chinese Medicine in Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- Guangdong Province Research and Development Center for Chinese Medicine in Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hiroshi Kurihara
- Guangdong Province Research and Development Center for Chinese Medicine in Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi Dai
- Guangdong Province Research and Development Center for Chinese Medicine in Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Rong-Rong He
- Guangdong Province Research and Development Center for Chinese Medicine in Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Song H, Ren J. Protocatechuic acid attenuates angiotensin II‐induced cardiac fibrosis in cardiac fibroblasts through inhibiting the NOX4/ROS/p38 signaling pathway. Phytother Res 2019; 33:2440-2447. [PMID: 31318113 DOI: 10.1002/ptr.6435] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hui Song
- Department of Cardiovascular MedicineAnkang Vocational and Technical College Affiliated Hospital Ankang China
| | - Jie Ren
- Department of Cardiovascular Medicinethe First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Molecular Cardiology, Shaanxi Province; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education Xi'an China
| |
Collapse
|
16
|
Screening of metabolites from endophytic fungi of some Nigerian medicinal plants for antimicrobial activities. EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Endophytic fungi associated with Nigerian plants have recently generated significant interest in drug discovery programmes due to their immense potential to contribute to the discovery of new bioactive compounds. This study was carried out to investigate the secondary metabolites of endophytic fungi isolated from leaves of Newbouldia laevis, Ocimum gratissimum, and Carica papaya The plants were collected from Agulu, Anambra State, South-East Nigeria. Endophytic fungal isolation, fungal fermentation; and extraction of secondary metabolites were carried out using standard methods. The crude extracts were screened for antimicrobial activities using the agar well diffusion method, and were also subjected to high performance liquid chromatography (HPLC) analysis to identify their constituents. A total of five endophytic fungi was isolated, two from N. laevis (NL-L1 and NL-L2), one from O. gratissimum (SL-L1), and two from C. papaya (PPL-LAC and PPL-LE2). In the antimicrobial assay, the extracts of NL-L2, SL-L1, and PPL-LE2 displayed mild antibacterial activity against both Gram negative and Gram positive test bacteria. PPL-LAC extract showed mild activity only against S. aureus, while no antimicrobial activity was recorded for NL-L1 extract. All the endophytic fungal extracts showed no activity against the test fungi C. albicans and A. fumigatus HPLC analysis of the fungal extracts revealed the presence of ethyl 4-hydroxyphenyl acetate and ferulic acid in NL-L1; ruspolinone in NL-L2; protocatechuic acid, scytalone, and cladosporin in SL-L1; indole-3-acetic acid and indole-3-carbaldehyde in PPL-LE2; and indole-3-acetic acid in PPL-LAC. The findings of this study revealed the potentials possessed by these plants as source of endophytes that express biological active compounds. These endophytes hold key of possibilities to the discovery of novel molecules for pharmaceutical, agricultural and industrial applications.
Collapse
|
17
|
Ciftci O, Duman AS, Turkmen NB, Taslıdere A. Beta-glucan prevents toxic effects of 2,3,7,8-TCDD in terms of oxidative and histopathological damage in heart tissue of rats. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000317674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
. K, . Y, Bais S. Neuroprotective Effect of Protocatechuic Acid Through MAO-B Inhibition in Aluminium Chloride Induced Dementia of Alzheimer’s Type in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.879.888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Protective Effects of Protocatechuic Acid on Seizure-Induced Neuronal Death. Int J Mol Sci 2018; 19:ijms19010187. [PMID: 29316696 PMCID: PMC5796136 DOI: 10.3390/ijms19010187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 11/17/2022] Open
Abstract
Protocatechuic acid (PCA) is a type of phenolic acid found in green tea and has been shown to have potent antioxidant and anti-inflammatory properties. However, the effect of PCA on pilocarpine seizure-induced neuronal death in the hippocampus has not been evaluated. In the present study, we investigated the potential therapeutic effects of PCA on seizure-induced brain injury. Epileptic seizure was induced by intraperitoneal (i.p.) injection of pilocarpine (25 mg/kg) in adult male rats, and PCA (30 mg/kg) was injected into the intraperitoneal space for three consecutive days after the seizure. Neuronal injury and oxidative stress were evaluated three days after a seizure. To confirm whether PCA increases neuronal survival and reduced oxidative injury in the hippocampus, we performed Fluoro-Jade-B (FJB) staining to detect neuronal death and 4-hydroxynonenal (4HNE) staining to detect oxidative stress after the seizure. In the present study, we found that, compared to the seizure vehicle-treated group, PCA administration reduced neuronal death and oxidative stress in the hippocampus. To verify whether a decrease of neuronal death by PCA treatment was due to reduced glutathione (GSH) concentration, we measured glutathione with N-ethylmaleimide (GS-NEM) levels in hippocampal neurons. A seizure-induced reduction in the hippocampal neuronal GSH concentration was preserved by PCA treatment. We also examined whether microglia activation was affected by the PCA treatment after a seizure, using CD11b staining. Here, we found that seizure-induced microglia activation was significantly reduced by the PCA treatment. Therefore, the present study demonstrates that PCA deserves further investigation as a therapeutic agent for reducing hippocampal neuronal death after epileptic seizures.
Collapse
|
21
|
Mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin- induced cardiovascular toxicity: An overview. Chem Biol Interact 2018; 282:1-6. [PMID: 29317249 DOI: 10.1016/j.cbi.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/05/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant and its toxicity is mediated by the aryl hydrocarbon receptor (AHR). Mechanisms of TCDD cardiovascular toxicity consist of oxidative stress, growth factor modulation, and ionic current alteration. It is indicated that the rodent cardiovascular system is a target for TCDD cardiomyopathy. Here, our understanding of TCDD cardiovascular toxicity is reviewed.
Collapse
|
22
|
Administration of Protocatechuic Acid Reduces Traumatic Brain Injury-Induced Neuronal Death. Int J Mol Sci 2017; 18:ijms18122510. [PMID: 29168791 PMCID: PMC5751113 DOI: 10.3390/ijms18122510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/27/2023] Open
Abstract
Protocatechuic acid (PCA) was first purified from green tea and has shown numerous biological activities, including anti-apoptotic, anti-inflammatory, and anti-atherosclerotic effects. The effect of PCA on traumatic brain injury (TBI)-induced neuronal death has not previously been evaluated. TBI is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration, impact, blast waves, or penetration by a projectile. TBI causes neuronal death in the hippocampus and cerebral cortex. The present study aimed to evaluate the therapeutic potential of PCA on TBI-induced neuronal death. Here, TBI was induced by a controlled cortical impact model using rats. PCA (30 mg/kg) was injected into the intraperitoneal (ip) space immediately after TBI. Neuronal death was evaluated with Fluoro Jade-B (FJB) staining at 24 h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE), glutathione (GSH) concentration was analyzed by glutathione adduct with N-ethylmaleimide (GS-NEM) staining at 24 h after TBI, and microglial activation in the hippocampus was detected by CD11b immunohistochemistry at one week after TBI. We found that the proportion of degenerating neurons, oxidative injury, GSH depletion, and microglia activation in the hippocampus and cortex were all reduced by PCA treatment following TBI. Therefore, our study suggests that PCA may have therapeutic potential in preventing TBI-induced neuronal death.
Collapse
|
23
|
Sarihan ME, Parlakpinar H, Ciftci O, Yilmaz F, Sagir M, Yilmaz O, Ceker G. Protective effects of melatonin against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cardiac injury in rats. Eur J Pharmacol 2015; 762:214-20. [DOI: 10.1016/j.ejphar.2015.04.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/30/2022]
|
24
|
Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components. Eur J Nutr 2015; 55:1283-96. [PMID: 26058880 DOI: 10.1007/s00394-015-0947-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The contribution of extra virgin olive oil (EVOO) macro- and micro-constituents in heart oxidative and inflammatory status in a hypercholesterolemic rat model was evaluated. Fatty acid profile as well as α-tocopherol, sterol, and squalene content was identified directly in rat hearts to distinguish the effect of individual components or to enlighten the potential synergisms. METHODS Oils and oil-products with discernible lipid and polar phenolic content were used. Wistar rats were fed a high-cholesterol diet solely, or supplemented with one of the following oils, i.e., EVOO, sunflower oil (SO), and high-oleic sunflower oil (HOSO) or oil-products, i.e., phenolics-deprived EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], and HOSO enriched with the EVOO phenolics [HOSO(+)]. Dietary treatment lasted 9 weeks; at the end of the intervention blood and heart samples were collected. RESULTS High-cholesterol-diet-induced dyslipidemia was shown by increase in serum total cholesterol, low-density lipoprotein cholesterol, and triacylglycerols. Dyslipidemia resulted in increased malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) levels, while glutathione and interleukin 6 levels remained unaffected in all intervention groups. Augmentation observed in MDA and TNF-α was attenuated in EVOO, SO(+), and HOSO(+) groups. Heart squalene and cholesterol content remained unaffected among all groups studied. Heart α-tocopherol was determined by oil α-tocopherol content. Variations were observed for heart β-sitosterol, while heterogeneity was reported with respect to heart fatty acid profile in all intervention groups. CONCLUSIONS Overall, we suggest that the EVOO-polar phenolic compounds decreased MDA and TNF-α in hearts of cholesterol-fed rats.
Collapse
|
25
|
Ou C, Shi N, Yang Q, Zhang Y, Wu Z, Wang B, Compans RW, He C. Protocatechuic acid, a novel active substance against avian influenza virus H9N2 infection. PLoS One 2014; 9:e111004. [PMID: 25337912 PMCID: PMC4206475 DOI: 10.1371/journal.pone.0111004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/19/2014] [Indexed: 01/28/2023] Open
Abstract
Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA) against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2) inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry.
Collapse
Affiliation(s)
- Changbo Ou
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, China; Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ningning Shi
- College of Life Sciences, Agricultural University of Hebei, Baoding, China
| | - Qunhui Yang
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Zhang
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zongxue Wu
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baozhong Wang
- Department of Microbiology and Immunology, and Yerkes Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard W Compans
- Department of Microbiology and Immunology, and Yerkes Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Song Y, Cui T, Xie N, Zhang X, Qian Z, Liu J. Protocatechuic acid improves cognitive deficits and attenuates amyloid deposits, inflammatory response in aged AβPP/PS1 double transgenic mice. Int Immunopharmacol 2014; 20:276-81. [PMID: 24667368 DOI: 10.1016/j.intimp.2014.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/22/2014] [Accepted: 03/05/2014] [Indexed: 01/14/2023]
Abstract
Protocatechuic acid (PCA), a phenolic compound of Radix Salviae Miltiorrhizae (RSM), has been found to have a protective effect on improving cognitive deficits in STZ-induced AD rats. The present study aimed to evaluate the potential protection activity of PCA on improving cognitive deficits and attenuating Aβ deposition and inflammatory responses in aged AβPP/PS1 double transgenic AD-model mice. The results of Morris water maze test showed that PCA (100mg/kg) significantly prolonged the mean latency time and the path length of AβPP/PS1 mice. PCA could significantly reduce the number of Aβ positive expressions in the hippocampus and cerebral cortex of AβPP/PS1 mice by immunocytochemical assay with Congo red staining and decrease remarkably APP expression level by Western blot analysis (P<0.01). The results from ELISA and Western blot analysis showed that the levels of inflammatory cytokines including TNF-α, IL-1β, IL-6 and IL-8 decreased remarkably by the treatment with PCA (P<0.01). Further, there was a substantial increase of brain derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex of AβPP/PS1 mice treated with PCA (P<0.01). The present study provided confirmatory evidence that PCA significantly decreased Aβ deposits, APP and inflammatory response, whereas increased learning and memory ability, as well as enhanced BDNF level. Our findings indicated that PCA is an effective neuroprotective agent for AD therapy. It might be associated with the attenuation on Aβ deposits and inflammation responses involved in the process.
Collapse
Affiliation(s)
- Yu Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Taizhen Cui
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Na Xie
- The Cardiology Department of the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xiaoyi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Zhibin Qian
- The Cardiology Department of the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Juyuan Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China.
| |
Collapse
|
27
|
Kakkar S, Bais S. A review on protocatechuic Acid and its pharmacological potential. ISRN PHARMACOLOGY 2014; 2014:952943. [PMID: 25006494 PMCID: PMC4005030 DOI: 10.1155/2014/952943] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/05/2014] [Indexed: 04/29/2023]
Abstract
Flavonoids and polyphenols are heterocyclic molecules that have been associated with beneficial effects on human health, such as reducing the risk of various diseases like cancer, diabetes, and cardiovascular and brain diseases. Protocatechuic acid (PCA) is a type of widely distributed naturally occurring phenolic acid. PCA has structural similarity with gallic acid, caffeic acid, vanillic acid, and syringic acid which are well-known antioxidant compounds. More than 500 plants contain PCA as active constituents imparting various pharmacological activity and these effects are due to their antioxidant activities, along with other possible mechanisms, such as anti-inflammatory properties and interaction with several enzymes. Over the past two decades, there have been an increasing number of publications on polyphenols and flavonoids, which demonstrate the importance of understanding the chemistry behind the antioxidant activities of both natural and synthesized compounds, considering the benefits from their dietary ingestion as well as pharmacological use. This work aims to review the pharmacological effects of PCA molecules in humans and the structural aspects that contribute to these effects.
Collapse
Affiliation(s)
- Sahil Kakkar
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, District S.B.S. Nagar, Punjab 144533, India
- *Sahil Kakkar:
| | - Souravh Bais
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, District S.B.S. Nagar, Punjab 144533, India
| |
Collapse
|