1
|
da Costa CS, de Oliveira TF, Dos Santos FCF, Padilha AS, Krause M, Carneiro MTWD, Miranda-Alves L, Graceli JB. Subacute cadmium exposure changes different metabolic functions, leading to type 1 and 2 diabetes mellitus features in female rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:4278-4297. [PMID: 38712533 DOI: 10.1002/tox.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Cadmium (Cd) is a heavy metal that acts as endocrine disrupting chemical (EDC). Few studies have investigated the effects of Cd exposure on metabolic dysfunctions, such as type 1 and 2 diabetes mellitus (T1DM and T2DM). Thus, we assessed whether subacute Cd exposure at occupational levels causes abnormalities in white adipose tissue (WAT), liver, pancreas, and skeletal muscle. We administered cadmium chloride (CdCl2) (100 ppm in drinking water for 30 days) to female rats and evaluated Cd levels in serum and metabolic organs, morphophysiology, inflammation, oxidative stress, fibrosis, and gene expression. High Cd levels were found in serum, WAT, liver, pancreas, and skeletal muscle. Cd-exposed rats showed low adiposity, dyslipidemia, insulin resistance, systemic inflammation, and oxidative stress compared to controls. Cd exposure reduced adipocyte size, hyperleptinemia, increased cholesterol levels, inflammation, apoptosis and fibrosis in WAT. Cd-exposed rats had increased liver cholesterol levels, insulin receptor beta (IRβ) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α) expression, karyomegaly, inflammation, and fibrosis. Cd exposure reduced insulin levels and pancreatic islet size and increased inflammation and fibrosis. Cd exposure reduced skeletal muscle fiber diameter and increased IR expression and inflammation. Finally, strong positive correlations were observed between serum, tissue Cd levels, abnormal morphology, tissue inflammation and fibrosis. Thus, these data suggest that subacute Cd exposure impairs WAT, liver, pancreas and skeletal muscle function, leading to T1DM and T2DM features and other complications in female rats.
Collapse
Affiliation(s)
- Charles S da Costa
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | | | | | | | - Maiara Krause
- Department of Chemistry, Federal University of Espirito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
2
|
Marić Đ, Baralić K, Vukelić D, Milošević I, Nikolić A, Antonijević B, Đukić-Ćosić D, Bulat Z, Aschner M, Djordjevic AB. Thyroid under siege: Unravelling the toxic impact of real-life metal mixture exposures in Wistar rats. CHEMOSPHERE 2024; 360:142441. [PMID: 38797200 DOI: 10.1016/j.chemosphere.2024.142441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study explored the effect of a toxic metal(oid) mixture (cadmium, lead, arsenic, mercury, chromium, and nickel) on thyroid function in Wistar rats exposed for 28 or 90 days. Dose levels were determined based on prior human-biomonitoring investigation. The experiment included control (male/female rats, 28 and 90 days) and treated groups, reflecting the lower confidence limit of the Benchmark Dose (BMDL) for hormone levels (M1/F1, 28 and 90 days), median concentrations (M2/F2, 28 and 90 days), 95th percentile concentrations (M3/F3, 28 and 90 days) measured in a human study, and reference values for individual metals extracted from the literature (M4/F4, 28 days only). Blood and thyroid gland samples were collected at the experimental termination. Serum TSH, fT3, fT4, T3, and T4 levels were measured, and SPINA-GT and SPINA-GD parameters were calculated. In silico analysis, employing the Comparative Toxicogenomic Database and ToppGene Suite portal, aimed to reveal molecular mechanisms underlying the observed effects. Results showed greater sensitivity in the female rats, with significant effects observed at lower doses. Subacute exposure increased TSH, fT3, and T3 levels in females, while subchronic exposure in males decreased TSH and fT3 levels and increased fT4. Subacute exposure induced changes even at allegedly safe doses, emphasizing potential health risks. Histological abnormalities were observed in all the treated groups. In silico findings suggested that toxic metal exposure contributes to thyroid disorders via oxidative stress, disruption of micronutrients, interference with hormone synthesis, and gene expression dysregulation. These results indicate that seemingly safe doses in single-substance research can adversely affect thyroid structure and function when administered as a mixture. These findings highlight the complex impact of toxic metal exposure on thyroid health, emphasizing that adhering to accepted safety limits for single-substance research fails to account for adverse effects on thyroid structure and function upon exposures to metal mixtures.
Collapse
Affiliation(s)
- Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Ivan Milošević
- University of Belgrade, Faculty of Veterinary Medicine, Department of Histology and Embryology, Bulevar oslobođenja 18, Belgrade, Serbia
| | - Anja Nikolić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Histology and Embryology, Bulevar oslobođenja 18, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
3
|
Kruger E, Toraih EA, Hussein MH, Shehata SA, Waheed A, Fawzy MS, Kandil E. Thyroid Carcinoma: A Review for 25 Years of Environmental Risk Factors Studies. Cancers (Basel) 2022; 14:cancers14246172. [PMID: 36551665 PMCID: PMC9777404 DOI: 10.3390/cancers14246172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental factors are established contributors to thyroid carcinomas. Due to their known ability to cause cancer, exposure to several organic and inorganic chemical toxicants and radiation from nuclear weapons, fallout, or medical radiation poses a threat to global public health. Halogenated substances like organochlorines and pesticides can interfere with thyroid function. Like phthalates and bisphenolates, polychlorinated biphenyls and their metabolites, along with polybrominated diethyl ethers, impact thyroid hormones biosynthesis, transport, binding to target organs, and impair thyroid function. A deeper understanding of environmental exposure is crucial for managing and preventing thyroid cancer. This review aims to investigate the relationship between environmental factors and the development of thyroid cancer.
Collapse
Affiliation(s)
- Eva Kruger
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.A.T.); (M.S.F.)
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amani Waheed
- Department of Community Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
- Correspondence: (E.A.T.); (M.S.F.)
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Sola E, Moyano P, Flores A, García J, García JM, Anadon MJ, Frejo MT, Pelayo A, de la Cabeza Fernandez M, Del Pino J. Cadmium-induced neurotoxic effects on rat basal forebrain cholinergic system through thyroid hormones disruption. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103791. [PMID: 34968718 DOI: 10.1016/j.etap.2021.103791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) single and repeated exposure produces cognitive dysfunctions. Basal forebrain cholinergic neurons (BFCN) regulate cognitive functions. BFCN loss or cholinergic neurotransmission dysfunction leads to cognitive disabilities. Thyroid hormones (THs) maintain BFCN viability and functions, and Cd disrupts their levels. However, Cd-induced BFCN damages and THs disruption involvement was not studied. To research this we treated male Wistar rats intraperitoneally with Cd once (1 mg/kg) or repetitively for 28 days (0.1 mg/kg) with/without triiodothyronine (T3, 40 µg/kg/day). Cd increased thyroid-stimulating-hormone (TSH) and decreased T3 and tetraiodothyronine (T4). Cd altered cholinergic transmission and induced a more pronounced neurodegeneration on BFCN, mediated partially by THs reduction. Additionally, Cd antagonized muscarinic 1 receptor (M1R), overexpressed acetylcholinesterase S variant (AChE-S), downregulated AChE-R, M2R, M3R and M4R, and reduced AChE and choline acetyltransferase activities through THs disruption. These results may assist to discover cadmium mechanisms that induce cognitive disabilities, revealing a new possible therapeutic tool.
Collapse
Affiliation(s)
- Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Maria de la Cabeza Fernandez
- Department of Chemistry in Pharmaceutical Sciences, Pharnacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Benvenga S, Micali A, Ieni A, Antonelli A, Fallahi P, Pallio G, Irrera N, Squadrito F, Picciolo G, Puzzolo D, Minutoli L. The Association of Myo-Inositol and Selenium Contrasts Cadmium-Induced Thyroid C Cell Hyperplasia and Hypertrophy in Mice. Front Endocrinol (Lausanne) 2021; 12:608697. [PMID: 33716965 PMCID: PMC7949001 DOI: 10.3389/fendo.2021.608697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies have demonstrated that, in addition to inducing structural changes in thyroid follicles, cadmium (Cd) increased the number of C cells. We examined the effects of myo-inositol (MI), seleno-L-methionine (Se), MI + Se, and resveratrol on C cells of mice exposed to cadmium chloride (Cd Cl2), as no data are currently available on the possible protective effects of these molecules. In contrast, we have previously shown this protective effect against CdCl2 on the thyroid follicles of mice. Ninety-eight C57 BL/6J adult male mice were divided into 14 groups of seven mice each: (i) 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); (ii) Se (0.2 mg/kg/day per os); (iii) Se (0.4 mg/kg/day per os); (iv) MI (360 mg/kg/day per os); (v) Se (0.2 mg/kg/day) + MI; (vi) Se (0.4 mg/kg/day) + MI; (vii) resveratrol (20 mg/kg); (viii) CdCl2 (2 mg/kg/day i.p.) + vehicle; (ix) CdCl2 + Se (0.2 mg/kg/day); (x) CdCl2 + Se (0.4 mg/kg/day); (xi) CdCl2 + MI; (xii) CdCl2 + Se (0.2 mg/kg/day) + MI; (xiii) CdCl2 + Se (0.4 mg/kg/day) + MI; (xiv) CdCl2 + resveratrol (20 mg/kg). After 14 days, thyroids were processed for histological, immunohistochemical, and morphometric evaluation. Compared to vehicle, Cd significantly decreased follicle mean diameter, increased CT-positive cells number, area and cytoplasmic density, and caused the disappearance of TUNEL-positive C cells, namely, the disappearance of C cells undergoing apoptosis. Se at either 0.2 or 0.4 mg/kg/day failed to significantly increase follicular mean diameter, mildly decreased CT-positive cells number, area and cytoplasmic density, and was ineffective on TUNEL-positive C cells. Instead, MI alone increased significantly follicular mean diameter and TUNEL-positive cells number, and decreased significantly CT-positive cells number, area and cytoplasmic density. MI + Se 0.2 mg/kg/day or MI + Se 0.4 mg/kg/day administration improved all five indices more markedly. Indeed, follicular mean diameter and TUNEL-positive cells number increased significantly, while CT-positive cells number, area and cytoplasmic density decreased significantly. Thus, all five indices overlapped those observed in vehicle-treated mice. Resveratrol improved significantly all the considered parameters, with a magnitude comparable to that of MI alone. In conclusion, the association Myo + Se is effective in protecting the mouse thyroid from the Cd-induced hyperplasia and hypertrophy of C cells. This benefit adds to that exerted by Myo + Se on thyrocytes and testis.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- *Correspondence: Giovanni Pallio,
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giacomo Picciolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Fathoming the link between anthropogenic chemical contamination and thyroid cancer. Crit Rev Oncol Hematol 2020; 150:102950. [DOI: 10.1016/j.critrevonc.2020.102950] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
|
7
|
Overview of Cadmium Thyroid Disrupting Effects and Mechanisms. Int J Mol Sci 2018; 19:ijms19051501. [PMID: 29772829 PMCID: PMC5983752 DOI: 10.3390/ijms19051501] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Humans are exposed to a significant number of chemicals that are suspected to produce disturbances in hormone homeostasis. Hence, in recent decades, there has been a growing interest in endocrine disruptive chemicals. One of the alleged thyroid disrupting substances is cadmium (Cd), a ubiquitous toxic metal shown to act as a thyroid disruptor and carcinogen in both animals and humans. Multiple PubMed searches with core keywords were performed to identify and evaluate appropriate studies which revealed literature suggesting evidence for the link between exposure to Cd and histological and metabolic changes in the thyroid gland. Furthermore, Cd influence on thyroid homeostasis at the peripheral level has also been hypothesized. Both in vivo and in vitro studies revealed that a Cd exposure at environmentally relevant concentrations results in biphasic Cd dose-thyroid response relationships. Development of thyroid tumors following exposure to Cd has been studied mainly using in vitro methodologies. In the thyroid, Cd has been shown to activate or stimulate the activity of various factors, leading to increased cell proliferation and a reduction in normal apoptotic activity. Evidence establishing the association between Cd and thyroid disruption remains ambiguous, with further studies needed to elucidate the issue and improve our understanding of Cd-mediated effects on the thyroid gland.
Collapse
|
8
|
Jurdziak M, Gać P, Poręba M, Szymańska-Chabowska A, Mazur G, Poręba R. Concentration of Thyrotropic Hormone in Persons Occupationally Exposed to Lead, Cadmium and Arsenic. Biol Trace Elem Res 2018; 182:196-203. [PMID: 28726072 PMCID: PMC5838128 DOI: 10.1007/s12011-017-1096-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 07/06/2017] [Indexed: 02/04/2023]
Abstract
Thyroid hormones are essential for body homeostasis. The scientific literature contains restricted proofs for effects of environmental chemical factors on thyroid function. The present study aimed at evaluating the relationship between toxicological parameters and concentration of thyrotropic hormone in persons occupationally exposed to lead, cadmium and arsenic. The studies were conducted on 102 consecutive workers occupationally exposed to lead, cadmium and arsenic (mean age 45.08 ± 9.87 years). The estimated parameters characterizing occupational exposure to metals included blood cadmium concentration (Cd-B), blood lead concentration (Pb-B), blood zinc protoporphyrin concentration (ZnPP) and urine arsenic concentration (As-U). Thyroid function was evaluated using the parameter employed in screening studies, the blood thyrotropic hormone concentration (TSH). No differences were disclosed in mean values of toxicological parameters between the subgroup of persons occupationally exposed to lead, cadmium and arsenic with TSH in and out of the accepted normal values. Logistic regression demonstrated that higher blood total bilirubin concentrations (ORu = 4.101; p = 0.025) and higher Cd-B (ORu = 1.532; p = 0.027) represented independent risk factors of abnormal values of TSH in this group. In conclusion, in the group of workers exposed to lead, cadmium and arsenic, higher blood cadmium concentration seems to augment the risk of abnormal hormonal thyroid function.
Collapse
Affiliation(s)
- Marta Jurdziak
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Paweł Gać
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wroclaw, Poland.
| | - Małgorzata Poręba
- Department of Pathophysiology, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| |
Collapse
|