1
|
Qu C, Zhu W, Dong K, Pan Z, Chen Y, Chen X, Liu X, Xu W, Lin H, Zheng Q, Li D. Inhibitory Effect of Hydroxysafflor Yellow B on the Proliferation of Human Breast Cancer MCF-7 Cells. Recent Pat Anticancer Drug Discov 2020; 14:187-197. [PMID: 31096897 DOI: 10.2174/1574891x14666190516102218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND A recent patent has been issued for hydroxysafflor yellow A (HSYA) as a drug to prevent blood circulation disorders. Hydroxysafflor yellow B (HSYB), an isomer of HSYA with antioxidative effects, has been isolated from the florets of Carthamus tinctorius. The effects of HSYB on the proliferation of cancer cells and its mechanism of action have not been investigated. OBJECTIVE The aims of this study were to investigate the anti-cancer effects and the molecular mechanism of HSYB for breast cancer MCF-7 cells. METHODS MTT assays and colony formation assays were used to assess the survival and proliferation of MCF-7 cells, respectively. Hoechst 33258 and flow cytometry were used to measure cell apoptosis and flow cytometry to determine effects on the cell cycle. Western blots were used to measure protein levels. RESULTS Treatment with HSYB reduced survival and proliferation of human breast cancer MCF-7 cells in a dose-dependent manner. Furthermore, HSYB arrested the MCF-7 cell cycle at the S phase and downregulated cyclin D1, cyclin E, and CDK2. Compared with a control group, HSYB suppressed the protein levels of p-PI3K, PI3K, AKT, and p-AKT in MCF-7 cells. In addition, HSYB decreased the levels of Bcl- 2, increased the levels of Bax, cleaved caspase-3 and caspase-9, and subsequently induced MCF-7 cell apoptosis. CONCLUSION These data demonstrate that HSYB arrests the MCF-7 cell cycle at the S phase and induces cell apoptosis. Patent US20170246228 indicates that HSYB can be potentially used for the prevention and treatment of human breast cancer.
Collapse
Affiliation(s)
- Chuanjun Qu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Weiwei Zhu
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, 264000, Yantai, China
| | - Kaijie Dong
- Yantai Affiliated Hosptial of Binzhou Medical University, 264003, Yantai, China
| | - Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Ying Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xiaoyu Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xiaona Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Wenjuan Xu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Haiyan Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| |
Collapse
|
2
|
Lei B, Xie L, Zhang S, Lv D, Shu F, Deng Y. UBE2W down-regulation promotes cell apoptosis and correlates with hypospermatogenesis. Andrologia 2019; 52:e13474. [PMID: 31710394 DOI: 10.1111/and.13474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023] Open
Abstract
Ubiquitin conjugating enzyme (E2) is crucial for mediating N-terminal ubiquitination. Recent study reports that UBE2W is involved in male infertility. However, the correlation between UBE2W expression and hypospermatogenesis is unclear. The present study is to explore the biological role of UBE2W and its association with hypospermatogenesis. Results showed that the sexpression levels of UBE2W in mouse testes were gradually elevated from 2 to 10 weeks, while were significantly deceased in the testes with hypospermatogenesis. When UBE2W expression was successfully down-regulated in spermatogenic cells, the rate of apoptosis was significantly increased and the P53/Bcl-2/caspase 6/caspase 9 signal pathways were activated. Thus, these data indicate that UBE2W down-regulation promotes cell apoptosis and correlates with hypospermatogenesis, which may be helpful for the diagnosis of male infertility.
Collapse
Affiliation(s)
- Bin Lei
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lixia Xie
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shoubo Zhang
- Center for Reproductive Medicine, Guangdong Armed Police Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daojun Lv
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fangpeng Shu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yushu Deng
- Hospital of Integrated Traditional Chinese Medicine & Western medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Sánchez MC, Alvarez Sedó C, Chaufan GR, Romanato M, Da Cuña R, Lo Nostro F, Calvo JC, Fontana V. In vitro effects of endosulfan-based insecticides on mammalian sperm. Toxicol Res (Camb) 2017; 7:117-126. [PMID: 30090568 DOI: 10.1039/c7tx00251c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Endosulfan is an organochloride insecticide extensively used in several countries to protect crops from pests. As several studies indicate that endosulfan can affect human and animal development, the aim of this study was to analyse whether sperm parameters and the process of chromatin decondensation could be altered by endosulfan in mice sperm. Spermatozoa from cauda epididymis were obtained from mature male mice and incubated in the presence of two commercial formulations (CFs) of endosulfan (Master® and Zebra Ciagro®) or the active ingredient (AI) alone. A significant decrease in the percentage motility and viability of spermatozoa with respect to controls was found. In vitro decondensation was performed in the presence of glutathione and heparin. Spermatozoa incubated with the AI, endosulfan Master® and endosulfan Zebra Ciagro® showed an increase in chromatin decondensation. In addition, the TUNEL assay showed that DNA fragmentation was significantly higher when sperm were incubated with either one of the CFs when compared to the AI or controls. The ultrastructure analysis of sperm cells showed evident changes in the structure of the plasma and acrosome membranes of sperm incubated with endosulfan AI or the CFs. These results suggest that endosulfan can affect sperm integrity and in vitro chromatin decondensation as well as DNA fragmentation.
Collapse
Affiliation(s)
- M C Sánchez
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234
| | - C Alvarez Sedó
- Centro de estudios en Genética y Reproducción (CEGyR) , Armenia
| | - G R Chaufan
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Departamento de Química Biológica, Laboratorio de Enzimología, Estrés y Metabolismo (LEEM), CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) , Buenos Aires , Argentina
| | - M Romanato
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234
| | - R Da Cuña
- Universidad de Buenos Aires , Facultad de Ciencias Exactas y Naturales , Departamento de Biodiversidad y Biología Experimental. Laboratorio de Ecotoxicología Acuática , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Buenos Aires , Argentina
| | - F Lo Nostro
- Universidad de Buenos Aires , Facultad de Ciencias Exactas y Naturales , Departamento de Biodiversidad y Biología Experimental. Laboratorio de Ecotoxicología Acuática , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Buenos Aires , Argentina
| | - J C Calvo
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234.,Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Quimica de Proteoglicanos y Matriz Extracelular. Buenos Aires , Argentina
| | - V Fontana
- Instituto de Biología y Medicina Experimental (IByME-CONICET) , Buenos Aires , Argentina . ; ; Tel: +54 11 47832869 ext 234.,Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Quimica de Proteoglicanos y Matriz Extracelular. Buenos Aires , Argentina
| |
Collapse
|
4
|
Wang J, Du H, Nie Y, Wang Y, Dai H, Wang M, Wang D, Xu A. Mitochondria and MAPK cascades modulate endosulfan-induced germline apoptosis in Caenorhabditis elegans. Toxicol Res (Camb) 2017; 6:412-419. [PMID: 30090509 PMCID: PMC6062295 DOI: 10.1039/c7tx00046d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022] Open
Abstract
Endosulfan as a new member of persistent organic pollutants has been shown to induce apoptosis in various animal models. However, the mechanism underlying endosulfan-induced apoptosis has not been well elucidated thus far. Caenorhabditis elegans N2 wild type and mutant strains were used in the present study to clarify the roles of the mitochondria, the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway, and mitogen-activated protein kinase (MAPK) cascades in α-endosulfan-induced apoptosis. Our results demonstrated a dose- and time-dependent increase of apoptosis in the meiotic zone of the gonad of C. elegans exposed to graded concentrations of endosulfan. The expression levels of sod-3, localized in the mitochondrial matrix, increased greatly after endosulfan exposure. A significant increase in germ cell apoptosis was observed in abnormal methyl viologen sensitivity-1 (mev-1(kn-1)) mutants (with abnormal mitochondrial respiratory chain complex II and higher ROS levels) compared to that in N2 at equal endosulfan concentrations. We found that the insulin/IGF-1 signaling pathway and its downstream Ras/ERK/MAPK did not participate in the endosulfan-induced apoptosis. However, the apoptosis in the loss-of-function strains of JNK and p38 MAPK signaling pathways was completely or mildly suppressed under endosulfan stress. The apoptotic effects of endosulfan were blocked in the mutants of jnk-1/JNK-MAPK, sek-1/MAP2K, and pmk-1/p38-MAPK, suggesting that these downstream genes play an essential role in endosulfan-induced germ cell apoptosis. In contrast, the mkk-4/MAP2K and nsy-1/MAP3K were only partially involved in the apoptosis induction. Our data provide evidence that endosulfan increases germ cell apoptosis, which is regulated by mitochondrial function, JNK and p38 MAPK cascades. These findings contribute to the understanding of the signal transduction pathways involved in endosulfan-induced apoptosis.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Environmental Science and Optoelectronic Technology , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Hua Du
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Yaguang Nie
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Yun Wang
- School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , P. R. China
| | - Hui Dai
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Mudi Wang
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Dayan Wang
- School of Environmental Science and Optoelectronic Technology , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| |
Collapse
|
5
|
Li Y, He X, Yang X, Huang K, Luo Y, Zhu L, Li Y, Xu W. Zinc inhibits the reproductive toxicity of Zearalenone in immortalized murine ovarian granular KK-1 cells. Sci Rep 2015; 5:14277. [PMID: 26395757 PMCID: PMC4585791 DOI: 10.1038/srep14277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022] Open
Abstract
Zearalenone (ZEA) mainly injures the reproductive system of mammals. In the present study, we aimed to explore the mechanism by which zinc inhibits ZEA-induced reproductive damage in KK-1 cells for the first time. The results shown that both zinc sulfate and zinc gluconate addition increased the intracellular zinc concentration and influenced the expression of zinc transporters (Slc30a1 and Slc39a1) in a time-dependent manner. Co-incubation of zinc with ZEA significantly reduced the ZEA-induced reactive oxygen species and malondialdehyde elevation by promoting the transcription of Mtf1 and Mt2. Meanwhile, two different zincs inhibited the ZEA-induced loss of mitochondrial membrane potential and elevation of late-stage apoptosis via activating the mitochondrial apoptotic pathway by recovering the mRNA and protein expression of pro-apoptotic genes (Bax, Casp3, Casp9). Zinc also recovered cells from S-phase cell cycle arrest. In addition, both of them promoted the ZEA-induced estrogen production but regulated the expression of steroidogenic enzymes (Star, Cyp11a1, Hsd3b1, Cyp17a1) in different way. All these results indicated that zinc could inhibit the reproductive toxicity of ZEA.
Collapse
Affiliation(s)
- Yijia Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China, 100083
| | - Xuan Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China, 100083
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Liye Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Yuzhe Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China, 100083
| |
Collapse
|