Mwanga HH, Baatjies R, Jeebhay MF. Characterization of Exposure to Cleaning Agents Among Health Workers in Two Southern African Tertiary Hospitals.
Ann Work Expo Health 2022;
66:998-1009. [PMID:
35674666 PMCID:
PMC9551323 DOI:
10.1093/annweh/wxac034]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND
Whilst cleaning agents are commonly used in workplaces and homes, health workers (HWs) are at increased risk of exposure to significantly higher concentrations used to prevent healthcare-associated infections. Exposure assessment has been challenging partly because many are used simultaneously resulting in complex airborne exposures with various chemicals requiring different sampling techniques. The main objective of this study was to characterize exposures of HWs to various cleaning agents in two tertiary academic hospitals in Southern Africa.
METHODS
A cross-sectional study of HWs was conducted in two tertiary hospitals in South Africa (SAH) and Tanzania (TAH). Exposure assessment involved systematic workplace observations, interviews with key personnel, passive personal environmental sampling for aldehydes (ortho-phthalaldehyde-OPA, glutaraldehyde and formaldehyde), and biomonitoring for chlorhexidine.
RESULTS
Overall, 269 samples were collected from SAH, with 62 (23%) collected from HWs that used OPA on the day of monitoring. OPA was detectable in 6 (2%) of all samples analysed, all of which were collected in the gastrointestinal unit of the SAH. Overall, department, job title, individual HW use of OPA and duration of OPA use were the important predictors of OPA exposure. Formaldehyde was detectable in 103 (38%) samples (GM = 0.0025 ppm; range: <0.0030 to 0.0270). Formaldehyde levels were below the ACGIH TLV-TWA (0.1 ppm). While individual HW use and duration of formaldehyde use were not associated with formaldehyde exposure, working in an ear, nose, and throat ward was positively associated with detectable exposures (P-value = 0.002). Glutaraldehyde was not detected in samples from the SAH. In the preliminary sampling conducted in the TAH, glutaraldehyde was detectable in 8 (73%) of the 11 samples collected (GM = 0.003 ppm; range: <0.002 to 0.028). Glutaraldehyde levels were lower than the ACGIH's TLV-Ceiling Limit of 0.05 ppm. p-chloroaniline was detectable in 13 (4%) of the 336 urine samples (GM = 0.02 ng/ml range: <1.00 to 25.80).
CONCLUSION
The study concluded that detectable exposures to OPA were isolated to certain departments and were dependent on the dedicated use of OPA by the HW being monitored. In contrast, low-level formaldehyde exposures were present throughout the hospital. There is a need for more sensitive exposure assessment techniques for chlorhexidine given its widespread use in the health sector.
Collapse