1
|
Wu D, Wang T, Liu H, Xu F, Xie S, Tong X, Li L, Peng D, Kong L. Wuzi-Yanzong-Wan prevents oligoasthenospermia due to TAp73 suppression by affecting cellular junction remodeling in testicular tissue in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115867. [PMID: 36341818 DOI: 10.1016/j.jep.2022.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuzi-Yanzong-Wan (WZYZW) is a classic Chinese herbal preparation, which has a significant clinical efficacy in tonifying the kidney and benefiting the sperm, and is widely used in the treatment of oligoasthenospermia with a long history. TAp73 inhibition results in the decrease of sperm quality, but the therapeutic mechanism of WZYZW on oligoasthenospermia caused by TAp73 gene inhibition remains elusive. AIMS OF STUDY The purpose of this study is to investigate whether TAp73 suppression leads to oligoasthenospermia and the application of WZYZW treatment in condition of TAp73 suppression. METHODOLOGY C57BL/6 male mice were injected with Pifithrin-α (2.5 mg/kg) intraperitoneally for 30 days to induce TAp73 suppression model, with WZYZW at 1.0, 2.0 and 4.0 g/kg were administrated in parallel. The blood, testis and epididymis were collected, with organ coefficient calculated. Makler sperm counter was used to analyze the density, motility, survival and malformation rate of sperm. Apoptosis of sperm was analyzed by flow cytometry. Serum hormone levels were determined using ELISA. HE staining and transmission electron microscopy (TEM) were used to observe histopathological changes of testis in blood-testis barrier (BTB), ectoplasmic specialization (ES) and other cell junctions. Expressions of cell adhesion factors including TAp73, Integrin-α6, N-cadherin, Nectin-2 and Occludin were determined by RT-PCR and western blotting. RESULTS Compared to control mice, TAp73 inhibition dramatically decreased the epididymal coefficient, sperm quality, and serum testosterone (T) level, while increasing apoptosis in sperm in mice. HE staining and TEM showed that the tight junction (TJ) and apical ES structure were seriously abnormal in the testis in mice with TAp73 inhibition. Additionally, the expression of Occludin protein was elevated, while that of TAp73, Integrin-α6, N-cadherin, and Nectin-2 reduced in model mice. WZYZW treatment ameliorated testicular spermatogenic dysfunctions in TAp73 suppressed mice, restoring the decreased sperm quality, serum T level and testicular histopathological changes of TJ and ES, as well as decreasing sperm malformation rate and apoptosis. Moreover, WZYZW reversed the expressions of Occludin, TAp73, Integrin-α6, N-cadherin and Nectin-2 in TAp73 suppressed mice. CONCLUSIONS By impairing spermatogenesis and maturation, TAp73 inhibition led to oligoasthenospermia in mice. WZYZW could rescue the oligoasthenospermia associated with TAp73 inhibition via affecting the dynamic remodeling of cellular junctions in testicular tissues in mice.
Collapse
Affiliation(s)
- Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei, China; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tongsheng Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hongjuan Liu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Fengqing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei, China
| | - Songzi Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei, China
| | - Xiaohui Tong
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Li Li
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Fluoride Exposure from Soybean Beverage Consumption: A Toxic Risk Assessment. Foods 2022; 11:foods11142121. [PMID: 35885364 PMCID: PMC9324846 DOI: 10.3390/foods11142121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
The consumption of vegetable milk as a substitute for cow's milk has increased in recent years. Of all the vegetable beverages on the market, soy is the most widely consumed. Soy is exposed to contamination by different chemical elements during harvesting. In this study, the concentration of fluoride in soy beverages was analyzed. Fluoride is an element that in high concentrations can be toxic, causing dental and bone fluorosis. The aims of the study were (i) to analyze the fluoride concentration in 30 samples in the most popular brands (A-Brand, B-Brand, C-Brand) of soybean beverages by a fluoride ion selective potentiometer and (ii) to evaluate the toxicological risk derived from its consumption. The fluoride concentrations were 15.5 mg/L (A-Brand), 11.3 mg/L (B-Brand) and 8.5 mg/L (C-Brand). A consumption of 1 to 3 servings/day was established. One serving (200 mL) of soybean beverage offered a contribution percentage over the ADI (acceptable daily intake) for infants and children. Teenagers and adults did not exceed the ADI (10 mg/day). The consumption of soy beverages contributes significantly to the daily intake of fluoride, which could exceed the ADI with a consequent health risk. It is recommended to control the fluoride levels in the raw material and in the final product to assure the safety of these products.
Collapse
|
3
|
Wei M, Ye Y, Ali MM, Chamba Y, Tang J, Shang P. Effect of Fluoride on Cytotoxicity Involved in Mitochondrial Dysfunction: A Review of Mechanism. Front Vet Sci 2022; 9:850771. [PMID: 35518640 PMCID: PMC9062983 DOI: 10.3389/fvets.2022.850771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Fluoride is commonly found in the soil and water environment and may act as chronic poison. A large amount of fluoride deposition causes serious harm to the ecological environment and human health. Mitochondrial dysfunction is a shared feature of fluorosis, and numerous studies reported this phenomenon in different model systems. More and more evidence shows that the functions of mitochondria play an extremely influential role in the organs and tissues after fluorosis. Fluoride invades into cells and mainly damages mitochondria, resulting in decreased activity of mitochondrial related enzymes, weakening of protein expression, damage of respiratory chain, excessive fission, disturbance of fusion, disorder of calcium regulation, resulting in the decrease of intracellular ATP and the accumulation of Reactive oxygen species. At the same time, the decrease of mitochondrial membrane potential leads to the release of Cyt c, causing a series of caspase cascade reactions and resulting in apoptosis. This article mainly reviews the mechanism of cytotoxicity related to mitochondrial dysfunction after fluorosis. A series of mitochondrial dysfunction caused by fluorosis, such as mitochondrial dynamics, mitochondrial Reactive oxygen species, mitochondrial fission, mitochondrial respiratory chain, mitochondrial autophagy apoptosis, mitochondrial fusion disturbance, mitochondrial calcium regulation are emphasized, and the mechanism of the effect of fluoride on cytotoxicity related to mitochondrial dysfunction are further explored.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Jia Tang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| |
Collapse
|
4
|
Grzegorzewska AK, Grot E, Sechman A. Sodium Fluoride In Vitro Treatment Affects the Expression of Gonadotropin and Steroid Hormone Receptors in Chicken Embryonic Gonads. Animals (Basel) 2021; 11:ani11040943. [PMID: 33810503 PMCID: PMC8066272 DOI: 10.3390/ani11040943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Effects of in vitro sodium fluoride (NaF) treatment on the mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of PGRs were examined in gonads of 14-day-old chicken embryos. In the ovary, the NaF treatment significantly increased mRNA levels of all investigated receptors. In the testes, the lowest applied dose of NaF (1.7 mM) significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. Alternatively, the higher NaF dose (7.1 mM) elevated PGR mRNA level in the male gonad. Immunohistochemical analysis revealed that the NaF exposure increased PGR expression in the ovarian cortex, while it decreased its expression in the testes. Collectively, these data indicate that: (i) NaF may disturb the chicken embryonic development, and (ii) different mechanisms of this toxicant action exist within the female and male gonads. Abstract Sodium fluoride (NaF), in addition to preventing dental decay may negatively affect the body. The aim of this study was to examine the effect of a 6 h in vitro treatment of gonads isolated from 14-day-old chicken embryos with NaF at doses of 1.7 (D1), 3.5 (D2), 7.1 (D3), and 14.2 mM (D4). The mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of progesterone receptors were examined in the tissue. In the ovary, the expression of FSHR and LHR increased following the NaF treatment. In the case of FSHR the highest stimulatory effect was noticed in the D2 group, while the expression of LHR increased in a dose-dependent manner. A gradual increase in ESR1 and PGR mRNA levels was also observed in the ovary following the NaF treatment, but only up to the D3 dose of NaF. The highest ESR2 level was also found in the D3 group. In the testes, the lowest dose of NaF significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. On the other hand, an increase in PGR expression was observed in the D3 group. The expression of LHR in the testes was not affected by the NaF treatment. Immunohistochemical analysis showed that NaF exposure increased progesterone receptor expression in the ovarian cortex, while it decreased its expression in the testes. These results reveal that NaF may disturb the chicken embryonic development and different mechanisms of this toxicant action exist within the females and males.
Collapse
|
5
|
Chaithra B, Sarjan HN. A Comparative Analysis of Fluoride-Contaminated Groundwater and Sodium Fluoride-Induced Reproductive Toxicity and Its Reversibility in Male Rats. Biol Trace Elem Res 2020; 197:507-521. [PMID: 31834608 DOI: 10.1007/s12011-019-01994-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/26/2019] [Indexed: 01/12/2023]
Abstract
The present study was undertaken to investigate the toxic effect of sodium fluoride (NaF)- and fluoride (F)-contaminated groundwater on male reproduction and it's reversibility in male rats. Adult male rats were orally treated with different concentrations of NaF- (1 mg, 5 mg, and 10 mg/kg/bw/rat) and F-contaminated groundwater for 52 days and after the confirmation of F-induced damage, the rats were allowed for recovery studies for 52 days. Exposure of NaF- and F-contaminated groundwater caused significant decline in total sperm count, sperm motility, serum concentration of testosterone, activities of testicular 3β-HSDH, counts of type A spermatogonia, preleptotene spermatocytes, midpachytene spermatocytes, elongated spermatids and round spermatids, activities of testicular and spermatozoa SOD and CAT, and increase in sperm abnormality and concentration of MDA of testis and spermatozoa compared to controls. Further, significant histological alterations characterized by shrunken seminiferous tubules and degeneration of different stages of spermatogonial cells were observed in rats treated with NaF of 10 mg/kg/bw and F-contaminated groundwater Majority of parameter studied showed severe damage in 10 mg/kg/bw of NaF-treated rats compared to that of F-contaminated groundwater. Further, dose-dependent alterations were observed with increase in concentration of NaF in most of the parameters. In recovery group rats of NaF- and F-contaminated groundwater, all the parameters were restored to control levels. The present study revealed the toxic effect of NaF and F-contaminated groundwater on male reproductive system of rats and the effects induced by NaF were dose-dependent. In addition, the study clearly revealed that F-induced toxicity on male reproduction is reversible in short-term exposure.
Collapse
Affiliation(s)
- Basavalingappa Chaithra
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | | |
Collapse
|
6
|
Jiang S, Liang C, Gao Y, Liu Y, Han Y, Wang J, Zhang J. Fluoride exposure arrests the acrosome formation during spermatogenesis via down-regulated Zpbp1, Spaca1 and Dpy19l2 expression in rat testes. CHEMOSPHERE 2019; 226:874-882. [PMID: 31509916 DOI: 10.1016/j.chemosphere.2019.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 06/10/2023]
Abstract
The exposure and health effects of fluoride are an ongoing topic that has attracted worldwide attention. Fluoride exposure disturbs the testicular development, sexual hormone levels and spermatogenesis. However, as to whether fluoride interferes with acrosome formation which is essential for production of capable spermatozoa during spermatogenesis still remains unclear. The objective was to determine the effects of fluoride on the acrosome formation and to further elucidate the potential mechanism of impaired reproductive function. For this, forty adult rats were assigned into four groups. The control group received distilled water, while the other three groups were treated with 25, 50 and 100 mg NaF/L via drinking water for 56 d, respectively. Testes were processed for total RNA extraction and western blot analysis. Three samples of each group were fixed in 2.5% glutaraldehyde solution for transmission electron microscopy analysis. From the results, we first found that fluoride decreased the expression of mRNA and protein levels of Zpbp1, Spaca1 and Dpy19l2 of seven markers during acrosome biogenesis in testes. Furthermore, fluoride damaged not only the acrosome structure, but also the structure of the nuclear lamina which was observed to be discontinuous and partially missing by transmission electron microscopy. Moreover, the results indicated that the altered structure in nuclear lamina maybe due to reduced LMNB2 expression in testis induced by fluoride. In a nutshell, fluoride exposure could restrain acrosome biogenesis during spermatogenesis and contribute to the elucidation of the underlying mechanisms of fluoride-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Shanshan Jiang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yan Gao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yu Liu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
7
|
Chaithra B, Sarjan HN, Shivabasavaiah. Time-dependent effect of ground water fluoride on motility, abnormality and antioxidant status of spermatozoa: An in vitro study. Toxicol Ind Health 2019; 35:368-377. [PMID: 31006349 DOI: 10.1177/0748233719842499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was undertaken to investigate the toxic effect of ground water fluoride (F) on motility, abnormality, and antioxidant status of spermatozoa. Treatment of ground water F with epididymal sperm suspension caused complete loss of sperm motility and decrease in the activities of superoxide dismutase (SOD) and catalase (CAT) and increase in the concentration of malondialdehyde (MDA) and abnormality of spermatozoa at 15 and 30 min time intervals. Further, incubation of spermatozoa with ground water F for 5, 10, and 15 min time intervals significantly reduced the sperm motility and activities of SOD and CAT and increased the concentration of MDA and abnormality of spermatozoa. The study revealed that F-induced effect on sperm motility and antioxidant status is time dependent. Increase in oxidative stress and concomitant decrease in motility of spermatozoa in ground water F clearly indicates that F-induced oxidative stress affected the sperm motility. The present study for the first time demonstrated the toxic effect of ground water F on spermatozoa at shorter duration of exposure, which affects the capability of spermatozoa in fertilization.
Collapse
Affiliation(s)
- B Chaithra
- 1 Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - H N Sarjan
- 1 Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Shivabasavaiah
- 1 Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| |
Collapse
|