1
|
Elmoslemany AM, Rehan M, Safhi FA, Zeima NM, El-Hassnin MF, Elnaggar SA, Almami IS, Zedan A. The Antioxidant and Anti-Inflammatory Impacts of Purple and White Eggplants on Fertility and Expression of Fertility-Related Genes in Rats Treated With Aluminum Chloride. J Toxicol 2024; 2024:8215321. [PMID: 39734607 PMCID: PMC11681986 DOI: 10.1155/jt/8215321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
The environmental xenobiotic aluminum chloride (AlCl3) destroys reproduction via free radicals. The present study aimed at evaluating the impact of purple and white eggplant on rat fertility when exposed to AlCl3. A total of 36 male albino rats were divided into six groups: a negative control, the second given AlCl3 (17 mg/kg b.w.) for 28 days, the third and fourth given a basal diet with 5% and 10% white eggplant powder, and the fifth and sixth given a basal diet with 5% and 10% purple eggplant powder. AlCl3 reduced follicular-stimulating hormone (FSH), plasma testosterone, sperm count, motility, and viability, luteinizing hormone (LH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities. On the contrary, malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) disclosed considerable increases. Besides, reproductive hormones, antioxidant enzymes, and sperm quality were significantly enhanced in the treated groups with eggplants. A downregulation in the expression of Fkbp6, Ccna1, and Cyp19A1 was detected, and normal expression was restored after treatment with high dose from eggplant (10%) without significant differences, whereas Msh4 and Cdk2 genes continued in their down expression and measured decrease up to 60% in Msh4 and 40% in Cdk2 in their mRNA levels after treatment with high dosage from eggplant, respectively. Alternatively, rats treated with eggplant at high dose (10%) gained more body weight (33%) and much bigger testicles (1.30 ± 0.05 g) when compared to AlCl3-treated rats (gained only 16% more body weight and 1.04 ± 0.06 g testis weight) after 28 days, subsequently, the eggplant reduced the side effect of AlCl3-induced toxicity. AlCl3 induced broad cytotoxic effects in seminiferous tubules, and the antioxidant and anti-inflammatory activities of eggplant minimized the histological alteration in rat testes.
Collapse
Affiliation(s)
- Amira M. Elmoslemany
- Department of Nutrition & Food Science, Faculty of Home Economy, Al-Azhar University, Tanta 31512, Egypt
| | - Medhat Rehan
- Department of Plant Production, College of Agriculture and Food, Qassim University, Burydah 51452, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Neveen M. Zeima
- Department of Nutrition & Food Science, Faculty of Home Economy, Al-Azhar University, Tanta 31512, Egypt
| | - Marwa Fawzy El-Hassnin
- Department of Nutrition & Food Science, Faculty of Home Economy, Al-Azhar University, Tanta 31512, Egypt
| | - Sabry Ali Elnaggar
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31512, Egypt
| | - Ibtesam S. Almami
- Department of Biology, College of Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Amina Zedan
- Department of Agriculture Botany (Genetics), Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Yang W, Hua R, Cao Y, He X. A metabolomic perspective on the mechanisms by which environmental pollutants and lifestyle lead to male infertility. Andrology 2024; 12:719-739. [PMID: 37815095 DOI: 10.1111/andr.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 10/11/2023]
Abstract
The incidence of male infertility (MI) is rising annually. According to epidemiological studies, environmental pollution (e.g., organic, inorganic, and air pollutants), occupational exposure (e.g., high temperature, organic solvents, and pesticides), and poor lifestyle (e.g., diet, sleep, smoking, alcohol consumption, and exercise) are important non-genetic causative factors of MI. Due to multiple and complex causative factors, the dose-effect relationship, and the uncertainty of pathogenicity, the pathogenesis of MI is far from fully clarified. Recent data show that the pathogenesis of MI can be monitored by the metabolites in serum, seminal plasma, urine, testicular tissue, sperm, and other biological samples. It is considered that these metabolites are closely related to MI phenotypes and can directly reflect the individual pathological and physiological conditions. Therefore, qualitative and quantitative analysis of the metabolome, the related metabolic pathways, and the identification of biomarkers will help to explore the MI-related metabolic problems and provide valuable insights into its pathogenic mechanisms. Here, we summarized new findings in MI metabolomics biomarkers research and their abnormal metabolic pathways triggered by the presented non-genetic risk factors, providing a metabolic landscape of semen and seminal plasma in general MI patients. Then, we compared the similarities and differences in semen and seminal plasma biomarkers between MI patients exposed to environmental and poor lifestyle factors and MI patients in general, and summarized some common biomarkers. We provide a better understanding of the biological underpinnings of MI pathogenesis, which might offer novel diagnostic, prognostic, and precise treatment approaches to MI.
Collapse
Affiliation(s)
- Wen Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Ali FEM, Badran KSA, Baraka MA, Althagafy HS, Hassanein EHM. Mechanism and impact of heavy metal-aluminum (Al) toxicity on male reproduction: Therapeutic approaches with some phytochemicals. Life Sci 2024; 340:122461. [PMID: 38286208 DOI: 10.1016/j.lfs.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Heavy metals are ubiquitous environmental toxicants that have been known to have a serious effect on human and animal health. Aluminum (Al) is a widely distributed metal in nature. Al exposure has a detrimental impact on human fertility. This review focused on Al-induced male reproductive toxicity and the potential therapeutic approaches with some phytochemicals. Data from the literature showed that Al exposure is accompanied by a drastic decline in blood levels of FSH, LH, and testosterone, reduced sperm count, and affected sperm quality. Al exposure at high levels can cause oxidative stress by increasing ROS and RNS production, mediated mainly by downregulating Nrf2 signaling. Moreover, several investigations demonstrated that Al exposure evoked inflammation, evidenced by increased TNF-α and IL-6 levels. Additionally, substantial evidence concluded the key role of apoptosis in Al-induced testicular toxicity mediated by upregulating caspase-3 and downregulating Bcl2 protein. The damaging effects of Al on mitochondrial bioenergetics are thought to be due to the excessive generation of free radicals. This review helps to clarify the main mechanism involved in Al-associated testicular intoxication and the treatment strategy to attenuate the notable harmful effects on the male reproductive system. It will encourage clinical efforts to target the pathway involved in Al-associated testicular intoxication.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Khalid S A Badran
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
4
|
Acikel-Elmas M, Algilani SA, Sahin B, Bingol Ozakpinar O, Gecim M, Koroglu K, Arbak S. Apocynin Ameliorates Monosodium Glutamate Induced Testis Damage by Impaired Blood-Testis Barrier and Oxidative Stress Parameters. Life (Basel) 2023; 13:life13030822. [PMID: 36983977 PMCID: PMC10052003 DOI: 10.3390/life13030822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND the aim of this study was to investigate the effects of apocynin (APO) on hormone levels, the blood-testis barrier, and oxidative biomarkers in monosodium glutamate (MSG) induced testicular degeneration. METHODS Sprague Dawley male rats (150-200 g; n = 32) were randomly distributed into four groups: control, APO, MSG, and MSG + APO. MSG and MSG + APO groups were administered MSG (120 mg/kg) for 28 days. Moreover, the APO and MSG + APO groups received APO (25 mg/kg) during the last five days of the experiment. All administrations were via oral gavage. Finally, biochemical analyses were performed based on the determination of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), as well as light and transmission electron microscopic examinations, assessment of sperm parameters, ZO-1, occludin, NOX-2, and TUNEL immunohistochemistry were evaluated. RESULTS MSG increased both the oxidative stress level and apoptosis, decreased cell proliferation, and caused degeneration in testis morphology including in the blood-testis barrier. Administration of apocynin reversed all the deteriorated morphological and biochemical parameters in the MSG + APO group. CONCLUSIONS apocynin is considered to prevent testicular degeneration by maintaining the integrity of the blood-testis barrier with balanced hormone and oxidant/antioxidant levels.
Collapse
Affiliation(s)
- Merve Acikel-Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Salva Asma Algilani
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Begum Sahin
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Ozlem Bingol Ozakpinar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Basibuyuk Yolu, 4/A, Basibuyuk, Istanbul 34854, Turkey
| | - Mert Gecim
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Basibuyuk Yolu, 4/A, Basibuyuk, Istanbul 34854, Turkey
| | - Kutay Koroglu
- Department of Histology and Embryology, School of Medicine, Marmara University, Basibuyuk Yolu No. 9 D:2, Maltepe, Istanbul 34854, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| |
Collapse
|
5
|
Usman IM, Adebisi SS, Musa SA, Iliya IA, Ochieng JJ, Ivang AE, Peter AB, Okesina AA. Neurobehavioral and Immunohistochemical Studies of the Cerebral Cortex Following Treatment with Ethyl Acetate Leaf Fraction of Tamarindus indica During Prenatal Aluminum Chloride Exposure in Wistar Rats. J Exp Pharmacol 2022; 14:275-289. [PMID: 36303592 PMCID: PMC9592736 DOI: 10.2147/jep.s369631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose The recent increase in aluminum exposure and its effect on the development of the brain call for serious attention. The study investigated the behavioral and immunohistochemical changes in the cerebral cortex of Wistar rats following prenatal co-administration of ethyl acetate leaf fraction of Tamarindus indica (EATI) and aluminum chloride (AlCl3). Methods Pregnant Wistar rats were divided into 5 groups (n=4). Group I (negative control), Group II-V were experimental groups treated with 200 mg/kg of AlCl3 s/c. Group III and IV received an additional 400 mg/kg and 800 mg/kg of EATI respectively, while Group V received an additional 300 mg/kg of Vitamin E for 14 days (prenatal days 7-21) via the oral route. The pups were then exposed to cliff avoidance, negative geotaxis, and elevated plus maze (EPM) test on the post-natal day (PoND) 4-6, 7-10, and 18 respectively. On PoND 21 pups were sacrificed, and the skull dissected to remove the brain. The harvested brain tissues were processed for Cresyl fast (CF) and glial fibrillary acid protein (GFAP). Results The study showed that EATI administration during AlCl3 exposure was associated with significant improvement in sensory-motor development. The EPM, CF, and GFAP results revealed significant improvement in anxiety-like behavior, motor activities, GFAP expression, pyramidal cell count, and Nissl staining following prenatal EATI administration during AlCl3 exposure. Conclusion The present study concludes that EATI was associated with some protective potential during prenatal AlCl3 exposure in Wistar rats.
Collapse
Affiliation(s)
- Ibe Michael Usman
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Human Anatomy, Kampala International University, Bushenyi, Uganda
| | | | - Sunday Abraham Musa
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - Juma John Ochieng
- Department of Human Anatomy, Kampala International University, Bushenyi, Uganda
| | | | - Akwu Bala Peter
- Department of Human Anatomy, Kampala International University, Bushenyi, Uganda
| | - Akeem Ayodeji Okesina
- Department of Human Anatomy, Kampala International University, Bushenyi, Uganda
- Department of Clinical Medicine and Community Health, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
6
|
Usman IM, Adebisi SS, Musa SA, Iliya IA, Archibong VB, Lemuel AM, Kasozi KI. Tamarindus indica ameliorates behavioral and cytoarchitectural changes in the cerebellar cortex following prenatal aluminum chloride exposure in Wistar rats. Anat Cell Biol 2022; 55:320-329. [PMID: 36002437 PMCID: PMC9519771 DOI: 10.5115/acb.22.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022] Open
Abstract
Aluminium exposure has been linked with developmental neurotoxicity in humans and experimental animals. The study aimed to evaluate the ameliorative effect of Tamarindus indica on the developing cerebellar cortex, neurobehavior, and immunohistochemistry of the cerebellar cortex following prenatal aluminum chloride (AlCl3) exposure. Pregnant timed Wistar rats were divided into 5 groups (n=4). Group I (negative control) was given distilled water, group II was treated with 200 mg/kg of AlCl3, group III were given 200 mg/kg of AlCl3 and 400 mg/kg of ethyl acetate leaf fraction of Tamarindus indica (EATI), group IV were given 200 mg/kg of AlCl3 and 800 mg/kg of EATI, and group V were treated with 200 mg/kg of AlCl3 s/c and 300 mg/kg of vitamin E for 14 days (prenatal day 7-21) via the oral route. Male pups (n=6) were randomly selected and taken for neurobehavioral studies, and humanely sacrificed via intraperitoneal injection of thiopental sodium. The cerebellum was removed, fixed and tissue processed for histological and immunohistochemical studies. The results revealed that prenatal AlCl3 exposure impacted neurodevelopment and neurobehaviour among exposed pups. Prenatal AlCl3 exposure was marked with delayed cytoarchitectural development of the cerebellar cortex and increased GFAP expression in the cerebellar cortex. On the other hand, treatment with EATI and vitamin E were marked with significant improvements. The present study therefore concluded treatment with EATI shows an ameliorative effect to prenatal AlCl3 exposure.
Collapse
Affiliation(s)
- Ibe Michael Usman
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda.,Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | - Samuel Sunday Adebisi
- Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday Abraham Musa
- Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | | | - Victor Bassey Archibong
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda.,Department of Human Anatomy, College of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Ann Monima Lemuel
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Counteracting effects of heavy metals and antioxidants on male fertility. Biometals 2021; 34:439-491. [PMID: 33761043 DOI: 10.1007/s10534-021-00297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Infertility is regarded as a global health problem affecting 8-12% of couples. Male factors are regarded as the main cause of infertility in 40% of infertile couples and contribute to this condition in combination with female factors in another 20% of cases. Abnormal sperm parameters such as oligospermia, asthenospermia, and teratozoospermia result in male factor infertility. Several studies have shown the deteriorative impact of heavy metals on sperm parameters and fertility in human subjects or animal models. Other studies have pointed to the role of antioxidants in counteracting the detrimental effects of heavy metals. In the currents study, we summarize the main outcomes of studies that assessed the counteracting impacts of heavy metal and antioxidants on male fertility. Based on the provided data from animal studies, it seems rational to administrate appropriate antioxidants in persons who suffer from abnormal sperm parameters and infertility due to exposure to toxic elements. Yet, further human studies are needed to approve the beneficial effects of these antioxidants.
Collapse
|
8
|
The synthesis of aggregation-induced emitting vitamin E derivative and its selective fluorescent response toward Fe3+. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|