1
|
Sabat M, Haładus B, Klincewicz M, Nalepa GJ. Cognitive load, fatigue and aversive simulator symptoms but not manipulated zeitgebers affect duration perception in virtual reality. Sci Rep 2022; 12:15689. [PMID: 36127357 PMCID: PMC9489727 DOI: 10.1038/s41598-022-18520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
The perceived duration of an interval depends on numerous aspects of the passed event both endogenous, including physiological arousal, level of wakefulness, attention, and surprise, as well as exogenous such as valence, salience, or context in the environment. There is some evidence that "time-giving" cues from the environment (zeitgebers) are coupled with time perception. The movement of the sun on the horizon was demonstrated to affect interval perception in a study conducted by Schatzschneider et al. (2016) claiming that the sun’s motion is a zeitgeber that influences time perception. In the present study, we undertake the first to our knowledge replication of this effect, extending the analysis to confounding aspects of the used paradigm. We aimed to test the effect of immersion, cognitive load, and changes in the speed of the sun on the horizon of the virtual environment on the perceived interval duration. We did not replicate the original effect, as reported by Schatzschneider et al., however, we did find that the perceived duration of an interval was affected by cognitive load, fatigue, and unpleasant symptoms caused by VR. In our analysis, we used Bayesian statistics to support our conclusion and offer its results as having some important consequences for the field.
Collapse
Affiliation(s)
- Magdalena Sabat
- Département d'études Cognitives, École Normale Superieure, PSL University, CNRS, 75005, Paris, France. .,Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, 31-007, Krakow, Poland.
| | - Bartosz Haładus
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, 31-007, Krakow, Poland.
| | - Michał Klincewicz
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, 31-007, Krakow, Poland.,Cognitive Science and Artificial Intelligence, Tilburg University, Werandelaan 2, 5037 AB, Tilburg, The Netherlands
| | - Grzegorz J Nalepa
- Jagiellonian Human-Centered Artificial Intelligence Laboratory (JAHCAI) and Institute of Applied Computer Science, Jagiellonian University, 31-007, Krakow, Poland
| |
Collapse
|
2
|
Petersen CC, Cao F, Stinchcombe AR, Mistlberger RE. Multiple entrained oscillator model of food anticipatory circadian rhythms. Sci Rep 2022; 12:9306. [PMID: 35661783 PMCID: PMC9166752 DOI: 10.1038/s41598-022-13242-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
For many animal species, knowing when to look for food may be as important as knowing where to look. Rats and other species use a feeding-responsive circadian timing mechanism to anticipate, behaviorally and physiologically, a predictable daily feeding opportunity. How this mechanism for anticipating a daily meal accommodates more than one predictable mealtime is unclear. Rats were trained to press a lever for food, and then limited to one or more daily meals at fixed or systematically varying times of day. The rats were able to anticipate up to 4 of 4 daily meals at fixed times of day and two ‘daily’ meals recurring at 24 h and 26 h intervals. When deprived of food, in constant dark, lever pressing recurred for multiple cycles at expected mealtimes, consistent with the periodicity of the prior feeding schedule. Anticipation did not require the suprachiasmatic nucleus circadian pacemaker. The anticipation rhythms could be simulated using a Kuramoto model in which clusters of coupled oscillators entrain to specific mealtimes based on initial phase and intrinsic circadian periodicity. A flexibly coupled system of food-entrainable circadian oscillators endows rats with adaptive plasticity in daily programming of foraging activity.
Collapse
Affiliation(s)
| | - Federico Cao
- Department of Mathematics, University of Toronto, Toronto, ON, M5S2E4, Canada
| | - Adam R Stinchcombe
- Department of Mathematics, University of Toronto, Toronto, ON, M5S2E4, Canada
| | - Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, Burnaby, BC, V5A1S6, Canada.
| |
Collapse
|
3
|
Circadian modulation of motivation in mice. Behav Brain Res 2020; 382:112471. [PMID: 31958519 DOI: 10.1016/j.bbr.2020.112471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 11/21/2022]
Abstract
Most living organisms have a circadian timing system adapted to optimize the daily rhythm of exposure to the environment. This circadian system modulates several behavioral and physiological processes, including the response to natural and drug rewards. Food is the most potent natural reward across species. Food-seeking is known to be mediated by dopaminergic and serotonergic transmission in cortico-limbic pathways. In the present work, we show evidence of a circadian modulation of motivation for food reward in young (4-months old) and aged (over 1.5 years old) C57BL/6 mice. Motivation was assayed through the progressive ratio (PR) schedule. Mice under a 12:12 light/dark (LD) cycle exhibited a diurnal rhythm in motivation, becoming more motivated during the night, coincident with their active phase. This rhythm was also evident under constant dark conditions, indicating the endogenous nature of this modulation. However, circadian arrhythmicity induced by chronic exposure to constant light conditions impaired the performance in the task causing low motivation levels. Furthermore, the day/night difference in motivation was also evident even without caloric restriction when using a palatable reward. All these results were found to be unaffected by aging. Taken together, our results indicate that motivation for food reward is regulated in a circadian manner, independent of the nutritional status and the nature of the reward, and that this rhythmic modulation is not affected by aging. These results may contribute to improve treatment related to psychiatric disorders or drugs of abuse, taking into account potential mechanisms of circadian modulation of motivational states.
Collapse
|
4
|
Subjective time estimation in Antarctica: The impact of extreme environments and isolation on a time production task. Neurosci Lett 2020; 725:134893. [PMID: 32147501 DOI: 10.1016/j.neulet.2020.134893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/21/2023]
Abstract
Interval timing measures time estimation in the seconds-to-minutes range. Antarctica provides a real-world context to study the effect of extreme photoperiods and isolation on time perception. The aim of this study was to explore interval timing as a cognitive measure in the crew of Belgrano II Argentine Antarctic Station. A total of 13 subjects were assessed for interval timing in short (3 s), intermediate (6 s) and long (12 s) duration stimuli. Measures were taken during the morning and evening, five times along the year. Significant variations were found for 3 s and 6 s during the morning and 6 s during the evening. Results suggest an impact of isolation on morning performances and an effect of the polar night on evening measures. These findings shed some light on the use of interval timing as a cognitive test to assess performance in extreme environments.
Collapse
|
5
|
Gür E, Fertan E, Alkins K, Wong AA, Brown RE, Balcı F. Interval timing is disrupted in female 5xFAD mice: An indication of altered memory processes. J Neurosci Res 2019; 97:817-827. [PMID: 30973189 DOI: 10.1002/jnr.24418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Temporal information processing in the seconds-to-minutes range is disrupted in patients with Alzheimer's disease (AD). In this study, we investigated the timing behavior of the 5xFAD mouse model of AD in the peak interval (PI) procedure. Nine-month-old female mice were trained with sucrose solution reinforcement for their first response after a fixed-interval (FI) and tested in the inter-mixed non-reinforced PI trials that lasted longer than FI. Timing performance indices were estimated from steady-state timed anticipatory nose-poking responses in the PI trials. We found that the time of maximal reward expectancy (peak time) of the 5xFAD mice was significantly earlier than that of the wild-type (WT) controls with no differences in other indices of timing performance. These behavioral differences corroborate the findings of previous studies on the disruption of temporal associative memory abilities of 5xFAD mice and can be accounted for by the scalar timing theory based on altered long-term memory consolidation of temporal information in the 5xFAD mice. This is the first study to directly show an interval timing phenotype in a genetic mouse model of AD.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kindree Alkins
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fuat Balcı
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
6
|
Laje R, Agostino PV, Golombek DA. The Times of Our Lives: Interaction Among Different Biological Periodicities. Front Integr Neurosci 2018; 12:10. [PMID: 29593507 PMCID: PMC5859086 DOI: 10.3389/fnint.2018.00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
Environmental cycles on Earth display different periodicities, including daily, tidal or annual time scales. Virtually all living organisms have developed temporal mechanisms to adapt to such changes in environmental conditions. These biological timing structures—ranging from microsecond to seasonal timing—may have intrinsic properties and even different clock machinery. However, interaction among these temporal systems may present evolutionary advantages, for example, when species are exposed to changing climatic conditions or different geographic locations. Here, we present and discuss a model that accounts for the circadian regulation of both ultradian (less than 24-h) and infradian (more than 24-h) cycles and for the interaction among the three time scales. We show two clear examples of such interaction: (i) between the circadian clock and the seasonal regulation of the Hypothalamic-Pituitary-Thyroid (HPT) axis; and (ii) between the circadian clock and the hypothalamic-nigrostriatal (HNS) ultradian modulation. This remarkable interplay among the otherwise considered isolated rhythms has been demonstrated to exist in diverse organisms, suggesting an adaptive advantage of multiple scales of biological timing.
Collapse
Affiliation(s)
- Rodrigo Laje
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), CONICET, Buenos Aires, Argentina
| | - Patricia V Agostino
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), CONICET, Buenos Aires, Argentina
| |
Collapse
|