1
|
Lesku JA, Libourel PA, Kelly ML, Hemmi JM, Kerr CC, Collin SP, Radford CA. An electrophysiological correlate of sleep in a shark. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 38957102 DOI: 10.1002/jez.2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Sleep is a prominent physiological state observed across the animal kingdom. Yet, for some animals, our ability to identify sleep can be masked by behaviors otherwise associated with being awake, such as for some sharks that must swim continuously to push oxygenated seawater over their gills to breathe. We know that sleep in buccal pumping sharks with clear rest/activity cycles, such as draughtsboard sharks (Cephaloscyllium isabellum, Bonnaterre, 1788), manifests as a behavioral shutdown, postural relaxation, reduced responsiveness, and a lowered metabolic rate. However, these features of sleep do not lend themselves well to animals that swim nonstop. In addition to video and accelerometry recordings, we tried to explore the electrophysiological correlates of sleep in draughtsboard sharks using electroencephalography (EEG), electromyography, and electrooculography, while monitoring brain temperature. The seven channels of EEG activity had a surprising level of (apparent) instability when animals were swimming, but also when sleeping. The amount of stable EEG signals was too low for replication within- and across individuals. Eye movements were not measurable, owing to instability of the reference electrode. Based on an established behavioral characterization of sleep in draughtsboard sharks, we offer the original finding that muscle tone was strongest during active wakefulness, lower in quietly awake sharks, and lowest in sleeping sharks. We also offer several critical suggestions on how to improve techniques for characterizing sleep electrophysiology in future studies on elasmobranchs, particularly for those that swim continuously. Ultimately, these approaches will provide important insights into the evolutionary confluence of behaviors typically associated with wakefulness and sleep.
Collapse
Affiliation(s)
- John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Paul-Antoine Libourel
- Center for Functional and Evolutionary Ecology, MAD Team, Montpellier, France
- Neuroscience Research Center of Lyon, Sleep Team, Bron, France
| | - Michael L Kelly
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Caroline C Kerr
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Shaun P Collin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig A Radford
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Norman H, Munson A, Cortese D, Koeck B, Killen SS. The interplay between sleep and ecophysiology, behaviour and responses to environmental change in fish. J Exp Biol 2024; 227:jeb247138. [PMID: 38860399 PMCID: PMC11213526 DOI: 10.1242/jeb.247138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Evidence of behavioural sleep has been observed in every animal species studied to date, but current knowledge of the behaviour, neurophysiology and ecophysiology associated with sleep is concentrated on mammals and birds. Fish are a hugely diverse group that can offer novel insights into a variety of sleep-related behaviours across environments, but the ecophysiological relevance of sleep in fish has been largely overlooked. Here, we systematically reviewed the literature to assess the current breadth of knowledge on fish sleep, and surveyed the diverse physiological effects and behaviours associated with sleep. We also discuss possible ways in which unstudied external factors may alter sleep behaviours. For example, predation risk may alter sleep patterns, as has been shown in mammalian, avian and reptilian species. Other environmental factors - such as water temperature and oxygen availability - have the potential to alter sleep patterns in fish differently than for terrestrial endotherms. Understanding the ecological influences on sleep in fish is vital, as sleep deprivation has the potential to affect waking behaviour and fitness owing to cognitive and physiological impairments, possibly affecting ecological phenomena and sensitivity to environmental stressors in ways that have not been considered.
Collapse
Affiliation(s)
- Helena Norman
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amelia Munson
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Koeck
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun S. Killen
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Wheeler CR, Kneebone J, Heinrich D, Strugnell JM, Mandelman JW, Rummer JL. Diel Rhythm and Thermal Independence of Metabolic Rate in a Benthic Shark. J Biol Rhythms 2022; 37:484-497. [PMID: 35822624 DOI: 10.1177/07487304221107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological rhythms that are mediated by exogenous factors, such as light and temperature, drive the physiology of organisms and affect processes ranging from cellular to population levels. For elasmobranchs (i.e. sharks, rays, and skates), studies documenting diel activity and movement patterns indicate that many species are crepuscular or nocturnal in nature. However, few studies have investigated the rhythmicity of elasmobranch physiology to understand the mechanisms underpinning these distinct patterns. Here, we assess diel patterns of metabolic rates in a small meso-predator, the epaulette shark (Hemiscyllium ocellatum), across ecologically relevant temperatures and upon acutely removing photoperiod cues. This species possibly demonstrates behavioral sleep during daytime hours, which is supported herein by low metabolic rates during the day and a 1.7-fold increase in metabolic rates at night. From spring to summer seasons, where average average water temperature temperatures for this species range 24.5 to 28.5 °C, time of day, and not temperature, had the strongest influence on metabolic rate. These results indicate that this species, and perhaps other similar species from tropical and coastal environments, may have physiological mechanisms in place to maintain metabolic rate on a seasonal time scale regardless of temperature fluctuations that are relevant to their native habitats.
Collapse
Affiliation(s)
- Carolyn R Wheeler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Dennis Heinrich
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - John W Mandelman
- School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts.,Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
4
|
Location, Location, Location! Evaluating Space Use of Captive Aquatic Species—A Case Study with Elasmobranchs. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The space use of captive animals has been reliably used as a tool to measure animal welfare in recent years. However, most analyses of space use focus primarily on terrestrial animals, with very little emphasis placed on the space use of aquatic animals. By comparing the space use of these animals to their natural histories and what would be expected of them physiologically, a general assessment of their overall welfare can be obtained. Using the Zoomonitor program, this study investigated the space use of five elasmobranch species housed in a captive aquatic environment: a blacktip reef shark (Carcharhinus melanopterus), a nurse shark (Ginglymostoma cirratum), a smooth dogfish (Musteluscanis), a bonnethead shark (Sphyrna tiburo), and a blacknose shark (Carcharhinus acronotus). The exhibit was delineated into five different zones: three represented the animal locations along the X/Y axis (‘Exhibit Use’), and two zones were related to the Z-axis (‘Depth Use’). The location of each individual on both the X/Y and Z axes was recorded during each observation. Heat maps generated from the Zoomonitor program were used in conjunction with the Spread of Participation Index (SPI) to interpret the data. It was found that while all the individuals used their given space differently, the Exhibit Use was relatively even overall (the SPI values ranged from 0.0378 to 0.367), while the Depth Use was more uneven (the SPI ranged from 0.679 to 0.922). These results mostly reflected what would be expected based on the species’ natural histories. However, for the smooth dogfish, the observed Exhibit Use and activity patterns revealed a mismatch between the anticipated and the actual results, leading to further interventions. As demonstrated here, space use results can be utilized to make positive changes to husbandry routines and enclosure designs for aquatic individuals; they are thus an important additional welfare measure to consider for aquatic species.
Collapse
|
5
|
Shark habituation to a food-related olfactory cue. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Kelly ML, Collins SP, Lesku JA, Hemmi JM, Collin SP, Radford CA. Energy conservation characterizes sleep in sharks. Biol Lett 2022; 18:20210259. [PMID: 35259943 PMCID: PMC8915397 DOI: 10.1098/rsbl.2021.0259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sharks represent the earliest group of jawed vertebrates and as such, they may provide original insight for understanding the evolution of sleep in more derived animals. Unfortunately, beyond a single behavioural investigation, very little is known about sleep in these ancient predators. As such, recordings of physiological indicators of sleep in sharks have never been reported. Reduced energy expenditure arising from sustained restfulness and lowered metabolic rate during sleep have given rise to the hypothesis that sleep plays an important role for energy conservation. To determine whether this idea applies also to sharks, we compared metabolic rates of draughtsboard sharks (Cephaloscyllium isabellum) during periods ostensibly thought to be sleep, along with restful and actively swimming sharks across a 24 h period. We also investigated behaviours that often characterize sleep in other animals, including eye closure and postural recumbency, to establish relationships between physiology and behaviour. Overall, lower metabolic rate and a flat body posture reflect sleep in draughtsboard sharks, whereas eye closure is a poorer indication of sleep. Our results support the idea for the conservation of energy as a function of sleep in these basal vertebrates.
Collapse
Affiliation(s)
- Michael L Kelly
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Selwyn P Collins
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,Oceans Institute, The University of Western Australia, Perth, Australia
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Melbourne, Australia.,Oceans Institute, The University of Western Australia, Perth, Australia.,Oceans Graduate School, The University of Western Australia, Perth, Australia
| | - Craig A Radford
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Diurnal vertical movements in black sea bass (
Centropristis striata
): Endogenous, facultative, or something else? Ecosphere 2021. [DOI: 10.1002/ecs2.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Kelly ML, Spreitzenbarth S, Kerr CC, Hemmi JM, Lesku JA, Radford CA, Collin SP. Behavioural sleep in two species of buccal pumping sharks (Heterodontus portusjacksoni and Cephaloscyllium isabellum). J Sleep Res 2020; 30:e13139. [PMID: 32672393 DOI: 10.1111/jsr.13139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
Abstract
Sleep is known to occur in most, if not all, animals studied thus far. Recent studies demonstrate the presence of sleep in flatworms and jellyfish, suggesting that this behaviour evolved early in the evolution of animals. Sharks are the earliest known extant, jawed vertebrates and may play an important role in understanding the evolutionary history of sleep in vertebrates, and yet, it is unknown whether they sleep. The Port Jackson (Heterodontus portusjacksoni) and draughtsboard (Cephaloscyllium isabellum) sharks are both benthic, buccal pumping species and remain motionless for extended periods of time. Whether these periods of prolonged inactivity represent sleep or quiet wakefulness is unknown. A key criterion for separating sleep from other quiescent states is an increased arousal threshold. We show here that inactive sharks of both species require significantly higher levels of electric stimulation before they show a visible response. Sharks deprived of rest, however, show no significant compensatory increase in restfulness during their normal active period following enforced swimming. Nonetheless, increased arousal thresholds in inactive animals suggest that these two species of shark sleep - the first such demonstration for members of this group of vertebrates. Further research, including electrophysiological studies, on these and other sharks, is required for a comprehensive understanding of sleep in cartilaginous fishes.
Collapse
Affiliation(s)
- Michael L Kelly
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,Oceans Institute, The University of Western Australia, Perth, Australia.,Oceans Graduate School, The University of Western Australia, Perth, Australia
| | - Stefan Spreitzenbarth
- Leigh Marine Laboratory, Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Caroline C Kerr
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,Oceans Institute, The University of Western Australia, Perth, Australia
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Shaun P Collin
- Oceans Institute, The University of Western Australia, Perth, Australia.,Oceans Graduate School, The University of Western Australia, Perth, Australia.,School of Life Sciences, La Trobe University, Melbourne, Australia
| |
Collapse
|