1
|
Türkyılmaz A, Sağer SG, Tekin E, Teralı K, Düzkalır H, Eser M, Akın Y. Expanding the clinical and genetic landscape of (developmental) epileptic encephalopathy with spike-and-wave activation in sleep: results from studies of a Turkish cohort. Neurogenetics 2024; 25:119-130. [PMID: 38388889 DOI: 10.1007/s10048-024-00751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The terms developmental epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS) designate a spectrum of conditions that are typified by different combinations of motor, cognitive, language, and behavioral regression linked to robust spike-and-wave activity during sleep. In this study, we aimed at describing the clinical and molecular findings in "(developmental) epileptic encephalopathy with spike-and-wave activation in sleep" (D)EE-SWAS) patients as well as at contributing to the genetic etiologic spectrum of (D)EE-SWAS. Single nucleotide polymorphism (SNP) array and whole-exome sequencing (WES) techniques were used to determine the underlying genetic etiologies. Of the 24 patients included in the study, 8 (33%) were female and 16 (67%) were male. The median age at onset of the first seizure was 4 years and the median age at diagnosis of (D)EE-SWAS was 5 years. Of the 24 cases included in the study, 13 were compatible with the clinical diagnosis of DEE-SWAS and 11 were compatible with the clinical diagnosis of EE-SWAS. Abnormal perinatal history was present in four cases (17%), and two cases (8%) had a family history of epilepsy. Approximately two-thirds (63%) of all patients had abnormalities detected on brain computerized tomography/magnetic resonance (CT/MR) imaging. After SNP array and WES analysis, the genetic etiology was revealed in 7 out of 24 (29%) cases. Three of the variants detected were novel (SLC12A5, DLG4, SLC9A6). This study revealed for the first time that Smith-Magenis syndrome, SCN8A-related DEE type 13 and SLC12A5 gene variation are involved in the genetic etiology of (D)EE-SWAS. (D)EE-SWAS is a genetically diverse disorder with underlying copy number variations and single-gene abnormalities. In the current investigation, rare novel variations in genes known to be related to (D)EE-SWAS and not previously reported genes to be related to (D)EE-SWAS were discovered, adding to the molecular genetic spectrum. Molecular etiology enables the patient and family to receive thorough and accurate genetic counseling as well as a personalized medicine approach.
Collapse
Affiliation(s)
- Ayberk Türkyılmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Ortahisar, 61100, Trabzon, Türkiye.
| | - Safiye Güneş Sağer
- Department of Pediatric Neurology, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul, Türkiye
| | - Emine Tekin
- Department of Pediatric Neurology, Giresun University Maternity and Children Hospital, Giresun, Türkiye
| | - Kerem Teralı
- Department of Medical Biochemistry, Cyprus International University Faculty of Medicine, Nicosia, Cyprus
| | - Hanife Düzkalır
- Department of Radiology, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul, Türkiye
| | - Metin Eser
- Department of Medical Genetics, Ümraniye Research and Training Hospital, Istanbul, Türkiye
| | - Yasemin Akın
- Department of Pediatrics, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul, Türkiye
| |
Collapse
|
2
|
Wu X, Zhang L, Chen S, Li Y. A case of Smith-Magenis syndrome with skin manifestations caused by a novel locus mutation in the RAI1 gene. J Int Med Res 2023; 51:3000605231190553. [PMID: 37756600 PMCID: PMC10683568 DOI: 10.1177/03000605231190553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/11/2023] [Indexed: 09/29/2023] Open
Abstract
We report the clinical features and genetic testing of a child with Smith-Magenis syndrome (SMS) to improve the understanding of this disease. The clinical data and molecular genetic test results of a child with SMS caused by a novel mutation in the retinoic acid-induced-1 (RAI1) gene were reviewed. A female patient aged 12 years and 9 months presented to the clinic because her mental and motor development was lagging behind that of her peers. The child had learning difficulties, poor motor coordination, temper tantrums, and self-injurious behaviors, such as skin scratching. She had a peculiar facial appearance, dry skin with scattered eczema, low hairline, wide forehead, flat face, collapsed nasal bridge, turned out upper lip, and deep palmar lines on the right hand through the palm. Wechsler's IQ test score was 48. Her electroencephalogram was normal. The diagnosis of SMS was confirmed by a heterozygous mutation in exon 3 of the RAI1 gene on chromosome chr-1717696650 at locus c.388C>T (P.Q130X). In addition, this patient had severe eczema on the skin. The RAI1 mutation c.388C>T (P.Q130X) is a newly reported variant that will help in the clinical identification of SMS and the precise localization of more phenotypically related genes.
Collapse
Affiliation(s)
- Xiaobin Wu
- Chongqing Health Center for Women and Children, Chongqing, China
- Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Chongqing Health Center for Women and Children, Chongqing, China
- Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Sisi Chen
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yanxi Li
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
3
|
Gorchkhanova ZK, Nikolaeva EA, Pivovarova AM, Bochenkov SV, Belousova ED. Difficulties in the differential diagnosis of Angelman’s syndrome. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2022-67-6-113-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angelman syndrome is a rare neurogenetic disease caused by the loss of the function of the maternal allele of the UBE3A gene on chromosome 15 (site 15q11.2–q13) and is characterized by severe mental retardation, lack of speech, epilepsy, microcephaly and a characteristic facial phenotype with a unique behavior in the form of frequent laughter. The combination of microcephaly, epilepsy, speechlessness and mental retardation poses a problem for differential diagnosis with many genetic diseases presenting with similar symptoms. Epileptic encephalopathy due to CDKL5 gene mutation and Rett syndrome have the greatest similarity. The hallmark of Angelman syndrome are laughter attacks and specific EEG changes. The authors have presented a table of the differential diagnosis of Angelman syndrome with some phenotypically similar genetic syndromes, indicating the most significant distinguishing features, which should facilitate for the pediatrician and neurologist the diagnostic path of establishing the correct diagnosis.
Collapse
Affiliation(s)
- Z. K. Gorchkhanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - E. A. Nikolaeva
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - A. M. Pivovarova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - S. V. Bochenkov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - E. D. Belousova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| |
Collapse
|
4
|
Loss of Rai1 enhances hippocampal excitability and epileptogenesis in mouse models of Smith-Magenis syndrome. Proc Natl Acad Sci U S A 2022; 119:e2210122119. [PMID: 36256819 PMCID: PMC9618093 DOI: 10.1073/pnas.2210122119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Smith–Magenis syndrome (SMS) is a neurodevelopmental disorder associated with autism and epileptic seizures. SMS is caused by losing one copy of the gene encoding retinoic acid induced 1 (RAI1), a ubiquitously expressed transcriptional regulator. To pinpoint brain regions and cell types contributing to neuronal hyperexcitability in SMS, we combined electrophysiology and three-dimensional imaging of Fos expression in the intact mouse brain. We found that Rai1-deficient hippocampal dentate gyrus granule cells (dGCs) show increased intrinsic excitability and enhanced glutamatergic synaptic transmission. Our findings indicate that Rai1 safeguards the hippocampal network from hyperexcitability and could help explain abnormal brain activity in SMS. Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith–Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.
Collapse
|
5
|
Rinaldi B, Villa R, Sironi A, Garavelli L, Finelli P, Bedeschi MF. Smith-Magenis Syndrome—Clinical Review, Biological Background and Related Disorders. Genes (Basel) 2022; 13:genes13020335. [PMID: 35205380 PMCID: PMC8872351 DOI: 10.3390/genes13020335] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Smith-Magenis syndrome (SMS) is a complex genetic disorder characterized by distinctive physical features, developmental delay, cognitive impairment, and a typical behavioral phenotype. SMS is caused by interstitial 17p11.2 deletions (90%), encompassing multiple genes and including the retinoic acid-induced 1 gene (RAI1), or by pathogenic variants in RAI1 itself (10%). RAI1 is a dosage-sensitive gene expressed in many tissues and acting as transcriptional regulator. The majority of individuals exhibit a mild-to-moderate range of intellectual disability. The behavioral phenotype includes significant sleep disturbance, stereotypes, maladaptive and self-injurious behaviors. In this review, we summarize current clinical knowledge and therapeutic approaches. We further discuss the common biological background shared with other conditions commonly retained in differential diagnosis.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.R.); (R.V.)
| | - Roberta Villa
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.R.); (R.V.)
| | - Alessandra Sironi
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, 20145 Milan, Italy; (A.S.); (P.F.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090 Milan, Italy
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Palma Finelli
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, 20145 Milan, Italy; (A.S.); (P.F.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090 Milan, Italy
| | - Maria Francesca Bedeschi
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.R.); (R.V.)
- Correspondence:
| |
Collapse
|
6
|
Rive Le Gouard N, Jacquinet A, Ruaud L, Deleersnyder H, Ageorges F, Gallard J, Lacombe D, Odent S, Mikaty M, Manouvrier-Hanu S, Ghoumid J, Geneviève D, Lehman N, Philip N, Edery P, Héron D, Rastel C, Chancenotte S, Thauvin-Robinet C, Faivre L, Perrin L, Verloes A. Smith-Magenis syndrome: Clinical and behavioral characteristics in a large retrospective cohort. Clin Genet 2021; 99:519-528. [PMID: 33368193 DOI: 10.1111/cge.13906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Smith-Magenis syndrome (SMS), characterized by dysmorphic features, neurodevelopmental disorder, and sleep disturbance, is due to an interstitial deletion of chromosome 17p11.2 (90%) or to point mutations in the RAI1 gene. In this retrospective cohort, we studied the clinical, cognitive, and behavioral profile of 47 European patients with SMS caused by a 17p11.2 deletion. We update the clinical and neurobehavioral profile of SMS. Intrauterine growth was normal in most patients. Prenatal anomalies were reported in 15%. 60% of our patients older than 10 years were overweight. Prevalence of heart defects (6.5% tetralogy of Fallot, 6.5% pulmonary stenosis), ophthalmological problems (89%), scoliosis (43%), or deafness (32%) were consistent with previous reports. Epilepsy was uncommon (2%). We identified a high prevalence of obstipation (45%). All patients had learning difficulties and developmental delay, but ID range was wide and 10% of patients had IQ in the normal range. Behavioral problems included temper tantrums and other difficult behaviors (84%) and night-time awakenings (86%). Optimal care of SMS children is multidisciplinary and requires important parental involvement. In our series, half of patients were able to follow adapted schooling, but 70% of parents had to adapt their working time, illustrating the medical, social, educative, and familial impact of having a child with SMS.
Collapse
Affiliation(s)
- Nicolas Rive Le Gouard
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Adeline Jacquinet
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France.,Department of Genetics, Sart Tilman University Hospital, Liège, Belgium
| | - Lyse Ruaud
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Hélène Deleersnyder
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Faustine Ageorges
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Jennifer Gallard
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Didier Lacombe
- Department of Genetics, Bordeaux, Pellegrin University Hospital, Bordeaux, France
| | - Sylvie Odent
- Department of Genetics, Rennes University Hospital, Rennes, France
| | - Myriam Mikaty
- Department of Genetics, Rennes University Hospital, Rennes, France
| | | | - Jamal Ghoumid
- Department of Genetics, Lille Jeanne de Flandre, University Hospital, Lille, France
| | - David Geneviève
- Department of Genetics, Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Natacha Lehman
- Department of Genetics, Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Nicole Philip
- Department of Genetics, la Timone University Hospital, Marseille, France
| | - Patrick Edery
- Department of Genetics, Femme-Mère-Enfant University Hospital, Lyon, France
| | - Delphine Héron
- Department of Genetics, APHP Pitié-Salpêtrière University Hospital, Paris, France
| | - Coralie Rastel
- Department of Genetics, APHP Pitié-Salpêtrière University Hospital, Paris, France
| | | | | | - Laurence Faivre
- Department of Genetics, Dijon University Hospital, Dijon, France
| | - Laurence Perrin
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| |
Collapse
|
7
|
Adrenocorticotropic Hormone Therapy Improved Spasms and Sleep Disturbance in Smith-Magenis Syndrome: A Case Report. Pediatr Rep 2020; 12:72-76. [PMID: 33114276 PMCID: PMC7717653 DOI: 10.3390/pediatric12030018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
Smith-Magenis syndrome (SMS) is a complex disorder characterized by variable mental retardation, sleep disturbances, craniofacial and skeletal anomalies, self-injurious and attention-seeking behaviors, and speech and motor delays. The case of a 14-month-old girl with SMS who was experiencing spasm clusters and sleep disturbances with sleep-wake intervals of 1.5 to 2 h persisting from the neonatal period was examined. The patient's spasms stopped and interictal electroencephalography did not show epileptic discharges after undergoing a high-dose adrenocorticotropic hormone (ACTH) therapy. Moreover, the patient's sleep cycle stabilized 1 month after receiving the ACTH therapy. Dramatic reductions in the patient's self-injurious behaviors were also noted. At 1 year following ACTH treatment, the patient's improved sleep was maintained. High-dose ACTH treatment was considered to contribute to the normal adaptation of the hypothalamic-pituitary-adrenal axis by regulating the release of corticotropin-releasing hormone, resulting in improvement of the patient's infantile spasms and sleep disturbances.
Collapse
|
8
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Coppola A, Cellini E, Stamberger H, Saarentaus E, Cetica V, Lal D, Djémié T, Bartnik‐Glaska M, Ceulemans B, Helen Cross J, Deconinck T, Masi SD, Dorn T, Guerrini R, Hoffman‐Zacharska D, Kooy F, Lagae L, Lench N, Lemke JR, Lucenteforte E, Madia F, Mefford HC, Morrogh D, Nuernberg P, Palotie A, Schoonjans A, Striano P, Szczepanik E, Tostevin A, Vermeesch JR, Van Esch H, Van Paesschen W, Waters JJ, Weckhuysen S, Zara F, Jonghe PD, Sisodiya SM, Marini C. Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia 2019; 60:689-706. [PMID: 30866059 PMCID: PMC6488157 DOI: 10.1111/epi.14683] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.
Collapse
Affiliation(s)
- Antonietta Coppola
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyWC1N3BGUK
- The Chalfont Centre for EpilepsyChesham Lane, Chalfont St PeterBucksUK
- Epilepsy CentreDepartment of Neuroscience, Reproductive and Odontostomatological SciencesFederico II UniversityNaplesItaly
| | - Elena Cellini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | - Hannah Stamberger
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Elmo Saarentaus
- Analytic and Translational Genetics UnitMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Institute of Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | - Dennis Lal
- Analytic and Translational Genetics UnitMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOH44195US
- Genomic Medicine InstituteLerner Research Institute Cleveland ClinicClevelandOH44195US
- Cologne Center for GenomicsUniversity of CologneGermany
| | - Tania Djémié
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | | | - Berten Ceulemans
- Department of Neurology‐Pediatric NeurologyUniversity and University Hospital AntwerpAntwerpBelgium
| | - J. Helen Cross
- Neurology DepartmentGreat Ormond Street HospitalNHS Foundation TrustLondonUK
- Clinical NeuroscienceUCL GOSH Institute of Child HealthLondonUK
- Young EpilepsyLingfieldUK
| | - Tine Deconinck
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | | | - Thomas Dorn
- Swiss Epilepsy CenterBleulerstrasse 60CH‐8008Switzerland
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | | | - Frank Kooy
- Department of Medical GeneticsUniversity of AntwerpAntwerpBelgium
| | - Lieven Lagae
- Department of Development and RegenerationSection Pediatric NeurologyUniversity Hospital KU Leuven3000LeuvenBelgium
| | - Nicholas Lench
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - Johannes R. Lemke
- Institute of Human GeneticsUniversity of Leipzig Hospitals and ClinicsLeipzigGermany
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental MedicineUniversity of Pisa, ItalyClinical Trial OfficeMeyer Children‘s HospitalFlorenceItaly
| | - Francesca Madia
- Neurogenetic LaboratoryScientific Institute for Research, Hospitalisation and Health Care (IRCCS) G. Gaslini InstituteGenovaItaly
| | - Heather C. Mefford
- Department of PediatricsDivision of Genetic MedicineUniversity of WashingtonSeattleUSA
| | - Deborah Morrogh
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | | | - Aarno Palotie
- Analytic and Translational Genetics UnitMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Institute of Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - An‐Sofie Schoonjans
- Department of Neurology‐Pediatric NeurologyUniversity and University Hospital AntwerpAntwerpBelgium
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases UnitDINOGMI‐Department of Neurosciences, Rehabilitation, Ophthalmology Genetics, Maternal and Child HealthUniversity of Genoa, ‘G. Gaslini’ InstituteGenovaItaly
| | - Elzbieta Szczepanik
- Clinic of Neurology of Children and AdolescentsInstitute of Mother and ChildWarsawPoland
| | - Anna Tostevin
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyWC1N3BGUK
- The Chalfont Centre for EpilepsyChesham Lane, Chalfont St PeterBucksUK
| | - Joris R. Vermeesch
- Center for Human GeneticsUniversity Hospitals LeuvenHerestraat 493000LeuvenBelgium
| | - Hilde Van Esch
- Center for Human GeneticsUniversity Hospitals LeuvenHerestraat 493000LeuvenBelgium
| | - Wim Van Paesschen
- Department of NeurologyUniversity Hospitals LeuvenHerestraat 493000LeuvenBelgium
| | - Jonathan J Waters
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - Sarah Weckhuysen
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Federico Zara
- Neurogenetic LaboratoryScientific Institute for Research, Hospitalisation and Health Care (IRCCS) G. Gaslini InstituteGenovaItaly
| | - Peter De Jonghe
- Neurogenetics GroupCenter for Molecular NeurologyVIB2650AntwerpBelgium
- Laboratory of NeurogeneticsInstitute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyWC1N3BGUK
- The Chalfont Centre for EpilepsyChesham Lane, Chalfont St PeterBucksUK
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesNeuroscience DepartmentA Meyer Children‘s HospitalUniversity of FlorenceFlorenceItaly
| | | |
Collapse
|
10
|
Trickett J, Heald M, Oliver C, Richards C. A cross-syndrome cohort comparison of sleep disturbance in children with Smith-Magenis syndrome, Angelman syndrome, autism spectrum disorder and tuberous sclerosis complex. J Neurodev Disord 2018; 10:9. [PMID: 29490614 PMCID: PMC5831859 DOI: 10.1186/s11689-018-9226-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Sleep disturbance is common in children with neurodevelopmental disorders, with high rates identified in children with Smith-Magenis syndrome (SMS), Angelman syndrome (AS), autism spectrum disorder (ASD) and tuberous sclerosis complex (TSC). Phenotypic sleep profiles for these groups may implicate different pathways to sleep disturbance. At present, cross-group comparisons that might elucidate putative phenotypic sleep characteristics are limited by measurement differences between studies. In this study, a standardised questionnaire was administered across groups affording comparison of the prevalence and profile of sleep disturbance between groups and contrast to chronologically age-matched typically developing (TD) peers. Methods The modified version of Simonds and Parraga’s sleep questionnaire, adapted for use in children with intellectual disabilities, was employed to assess sleep disturbance profiles in children aged 2–15 years with SMS (n = 26), AS (n = 70), ASD (n = 30), TSC (n = 20) and a TD contrast group (n = 47). Associations between sleep disturbance and age, obesity, health conditions and overactivity/impulsivity were explored for each neurodevelopmental disorder group. Results Children with SMS displayed severe night waking (81%) and early morning waking (73%). In contrast, children with ASD experienced difficulties with sleep onset (30%) and sleep maintenance (43%). Fewer children with ASD (43%) and AS (46%) experienced severe night waking compared to children with SMS (both p < .01). Higher sleep-disordered breathing scores were identified for children with SMS (p < .001) and AS (p < .001) compared to the TD group. Sleep disturbance in children with AS and TSC was associated with poorer health. Children experiencing symptoms indicative of gastro-oesophageal reflux had significantly higher sleep-disordered breathing scores in the AS, SMS and ASD groups (all p < .01). A number of associations between overactivity, impulsivity, gastro-oesophageal reflux, age and sleep disturbance were found for certain groups. Conclusions These data reveal syndrome-specific profiles of sleep disturbance. The divergent associations between sleep parameters and person characteristics, specifically symptoms of gastro-oesophageal reflux, overactivity and impulsivity and age, implicate aetiology-specific mechanisms underpinning sleep disturbance. The differences in prevalence, severity and mechanisms implicated in sleep disturbance between groups support a syndrome-sensitive approach to assessment and treatment of sleep disturbance in children with neurodevelopmental disorders. Electronic supplementary material The online version of this article (10.1186/s11689-018-9226-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Trickett
- Department of Health Sciences, College of Life Sciences, George Davies Centre, University of Leicester, Leicester, LE1 7RH, UK. .,Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| | - M Heald
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - C Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - C Richards
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
Rao NR, Abad C, Perez IC, Srivastava AK, Young JI, Walz K. Rai1 Haploinsufficiency Is Associated with Social Abnormalities in Mice. BIOLOGY 2017; 6:biology6020025. [PMID: 28448442 PMCID: PMC5485472 DOI: 10.3390/biology6020025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022]
Abstract
Background: Autism is characterized by difficulties in social interaction, communication, and repetitive behaviors; with different degrees of severity in each of the core areas. Haploinsufficiency and point mutations of RAI1 are associated with Smith-Magenis syndrome (SMS), a genetic condition that scores within the autism spectrum range for social responsiveness and communication, and is characterized by neurobehavioral abnormalities, intellectual disability, developmental delay, sleep disturbance, and self-injurious behaviors. Methods: To investigate the relationship between Rai1 and social impairment, we evaluated the Rai1+/− mice with a battery of tests to address social behavior in mice. Results: We found that the mutant mice showed diminished interest in social odors, abnormal submissive tendencies, and increased repetitive behaviors when compared to wild type littermates. Conclusions: These findings suggest that Rai1 contributes to social behavior in mice, and prompt it as a candidate gene for the social behaviors observed in Smith-Magenis Syndrome patients.
Collapse
Affiliation(s)
- Nalini R Rao
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
| | - Irene C Perez
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
| | - Anand K Srivastava
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Abstract
Epilepsy and autistic spectrum disorder frequently coexist in the same individual. Electroencephalogram (EEG) epileptiform activity is also present at a substantially higher rate in children with autism than normally developing children. As with epilepsy, there are a multitude of genetic and environmental factors that can result in autistic spectrum disorder. There is growing consensus from both animal and clinical studies that autism is a disorder of aberrant connectivity. As measured with functional magnetic resonance imaging (MRI) and EEG, the brain in autistic spectrum disorder may be under- or overconnected or have a mixture of over- and underconnectivity. In the case of comorbid epilepsy and autism, an imbalance of the excitatory/inhibitory (E/I) ratio in selected regions of the brain may drive overconnectivity. Understanding the mechanism by which altered connectivity in individuals with comorbid epilepsy and autistic spectrum disorder results in the behaviors specific to the autistic spectrum disorder remains a challenge.
Collapse
Affiliation(s)
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
13
|
Abstract
CHD is frequently associated with a genetic syndrome. These syndromes often present specific cardiovascular and non-cardiovascular co-morbidities that confer significant peri-operative risks affecting multiple organ systems. Although surgical outcomes have improved over time, these co-morbidities continue to contribute substantially to poor peri-operative mortality and morbidity outcomes. Peri-operative morbidity may have long-standing ramifications on neurodevelopment and overall health. Recognising the cardiovascular and non-cardiovascular risks associated with specific syndromic diagnoses will facilitate expectant management, early detection of clinical problems, and improved outcomes--for example, the development of syndrome-based protocols for peri-operative evaluation and prophylactic actions may improve outcomes for the more frequently encountered syndromes such as 22q11 deletion syndrome.
Collapse
|
14
|
Neira-Fresneda J, Potocki L. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith-Magenis and Potocki-Lupski Syndromes. J Pediatr Genet 2015; 4:159-67. [PMID: 27617127 DOI: 10.1055/s-0035-1564443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are reciprocal contiguous gene syndromes within the well-characterized 17p11.2 region. Approximately 3.6 Mb microduplication of 17p11.2, known as PTLS, represents the mechanistically predicted homologous recombination reciprocal of the SMS microdeletion, both resulting in multiple congenital anomalies. Mouse model studies have revealed that the retinoic acid-inducible 1 gene (RAI1) within the SMS and PTLS critical genomic interval is the dosage-sensitive gene responsible for the major phenotypic features in these disorders. Even though PTLS and SMS share the same genomic region, clinical manifestations and behavioral issues are distinct and in fact some mirror traits may be on opposite ends of a given phenotypic spectrum. We describe the neurobehavioral phenotypes of SMS and PTLS patients during different life phases as well as clinical guidelines for diagnosis and a multidisciplinary approach once diagnosis is confirmed by array comparative genomic hybridization or RAI1 gene sequencing. The main goal is to increase awareness of these rare disorders because an earlier diagnosis will lead to more timely developmental intervention and medical management which will improve clinical outcome.
Collapse
Affiliation(s)
- Juanita Neira-Fresneda
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
15
|
Poisson A, Nicolas A, Cochat P, Sanlaville D, Rigard C, de Leersnyder H, Franco P, Des Portes V, Edery P, Demily C. Behavioral disturbance and treatment strategies in Smith-Magenis syndrome. Orphanet J Rare Dis 2015; 10:111. [PMID: 26336863 PMCID: PMC4559928 DOI: 10.1186/s13023-015-0330-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Smith-Magenis syndrome is a complex neurodevelopmental disorder that includes intellectual deficiency, speech delay, behavioral disturbance and typical sleep disorders. Ninety percent of the cases are due to a 17p11.2 deletion encompassing the RAI1 gene; other cases are linked to mutations of the same gene. Behavioral disorders often include outbursts, attention deficit/hyperactivity disorders, self-injury with onychotillomania and polyembolokoilamania (insertion of objects into body orifices), etc. Interestingly, the stronger the speech delay and sleep disorders, the more severe the behavioral issues. Sleep disturbances associate excessive daytime sleepiness with nighttime agitation. They are underpinned by an inversion of the melatonin secretion cycle. However, the combined intake of beta-blockers in the morning and melatonin in the evening may radically alleviate the circadian rhythm problems. Discussion Once sleep disorders are treated, the next challenge is finding an effective treatment for the remaining behavioral problems. Unfortunately, there is a lack of objective guidelines. A comprehensive evaluation of such disorders should include sleep disorders, potential causes of pain, neurocognitive level and environment (i.e. family and school). In any case, efforts should focus on improving communication skills, identifying and treating attention deficit/hyperactivity, aggressiveness and anxiety. Summary Treatment of Smith-Magenis syndrome is complex and requires a multidisciplinary team including, among others, geneticists, psychiatrists, neuropediatricians/neurologists, somnologists, developmental and behavioral pediatricians, and speech and language therapists.
Collapse
Affiliation(s)
- Alice Poisson
- Center for Screening and Treatment of Psychiatric Disorders of Genetic Origin, Vinatier Hospital, 95 Bd Pinel, 69678, Lyon, France. .,Cognitive Neuroscience Center, UMR 5229, French National Research Center (CNRS), Bron, France. .,Lyon 1 University, Lyon, France.
| | - Alain Nicolas
- Center for Screening and Treatment of Psychiatric Disorders of Genetic Origin, Vinatier Hospital, 95 Bd Pinel, 69678, Lyon, France.,Michel Jouvet Unite (sleep Medicine), Vinatier Hospital, Human chronobiology team INSERM 846, Bron, France
| | - Pierre Cochat
- Lyon 1 University, Lyon, France.,Pediatric Nephrology and Rhumatology Ward, Reference Center for Rare Kidney Diseases, Civil Hospices of Lyon, INSERM U820, Bron, France
| | - Damien Sanlaville
- Lyon 1 University, Lyon, France.,Department of Genetics, Reference Center for Developmental Anomalies and Malformation Syndromes, Civil Hospices of Lyon, Bron, France
| | - Caroline Rigard
- Center for Screening and Treatment of Psychiatric Disorders of Genetic Origin, Vinatier Hospital, 95 Bd Pinel, 69678, Lyon, France.,Cognitive Neuroscience Center, UMR 5229, French National Research Center (CNRS), Bron, France
| | | | - Patricia Franco
- Lyon 1 University, Lyon, France.,Hypnology Unit, Neuropediatric Ward, Civil Hospices of Lyon and INSERM U628, Lyon, France
| | - Vincent Des Portes
- Lyon 1 University, Lyon, France.,Pediatric Neurology Ward, Reference Center "Intellectual Deficiencies with Rare Causes", Civil Hospices of Lyon, Bron, France. CNRS UMR 5304, L2C2, Institute of Cognitive Sciences, 69675, Bron, France
| | - Patrick Edery
- Lyon 1 University, Lyon, France.,Department of Genetics, Reference Center for Developmental Anomalies and Malformation Syndromes, Civil Hospices of Lyon, Bron, France.,Neuroscience Research Center of Lyon, Inserm U1028, CNRS UMR 5292, UCBL, TIGER Team, Bron, France
| | - Caroline Demily
- Center for Screening and Treatment of Psychiatric Disorders of Genetic Origin, Vinatier Hospital, 95 Bd Pinel, 69678, Lyon, France.,Cognitive Neuroscience Center, UMR 5229, French National Research Center (CNRS), Bron, France.,Lyon 1 University, Lyon, France
| |
Collapse
|
16
|
Poisson A, Nicolas A, Sanlaville D, Cochat P, De Leersnyder H, Rigard C, Franco P, des Portes V, Edery P, Demily C. [Smith-Magenis syndrome is an association of behavioral and sleep/wake circadian rhythm disorders]. Arch Pediatr 2015; 22:638-45. [PMID: 25934608 DOI: 10.1016/j.arcped.2015.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/21/2014] [Accepted: 03/21/2015] [Indexed: 12/12/2022]
Abstract
Smith-Magenis syndrome (SMS) is a genetic disorder characterized by the association of facial dysmorphism, oral speech delay, as well as behavioral and sleep/wake circadian rhythm disorders. Most SMS cases (90%) are due to a 17p11.2 deletion encompassing the RAI1 gene; other cases stem from mutations of the RAI1 gene. Behavioral issues may include frequent outbursts, attention deficit/hyperactivity disorders, self-injuries with onychotillomania and polyembolokoilamania (insertion of objects into bodily orifices), etc. It is noteworthy that the longer the speech delay and the more severe the sleep disorders, the more severe the behavioral issues are. Typical sleep/wake circadian rhythm disorders associate excessive daytime sleepiness with nocturnal agitation. They are related to an inversion of the physiological melatonin secretion cycle. Yet, with an adapted therapeutic strategy, circadian rhythm disorders can radically improve. Usually an association of beta-blockers in the morning (stops daily melatonin secretion) and melatonin in the evening (mimics the evening deficient peak) is used. Once the sleep disorders are controlled, effective treatment of the remaining psychiatric features is needed. Unfortunately, as for many orphan diseases, objective guidelines have not been drawn up. However, efforts should be focused on improving communication skills. In the same vein, attention deficit/hyperactivity disorders, aggressiveness, and anxiety should be identified and specifically treated. This whole appropriate medical management is underpinned by the diagnosis of SMS. Diagnostic strategies include fluorescent in situ hybridization (FISH) or array comparative genomic hybridization (array CGH) when a microdeletion is sought and Sanger sequencing when a point mutation is suspected. Thus, the diagnosis of SMS can be made from a simple blood sample and should be questioned in subjects of any age presenting with an association of facial dysmorphism, speech delay with behavioral and sleep/wake circadian rhythm disorders, and other anomalies including short stature and mild dysmorphic features.
Collapse
Affiliation(s)
- A Poisson
- UDEIP, centre de dépistage et de prise en charge des troubles psychiatriques d'origine génétique, centre hospitalier le Vinatier, 95, boulevard Pinel, 69678 Bron cedex, France; Centre de neurosciences cognitives, UMR 5229 CNRS, 69500 Bron, France; Université Lyon 1, 69500 Lyon, France.
| | - A Nicolas
- UDEIP, centre de dépistage et de prise en charge des troubles psychiatriques d'origine génétique, centre hospitalier le Vinatier, 95, boulevard Pinel, 69678 Bron cedex, France; Université Lyon 1, 69500 Lyon, France
| | - D Sanlaville
- Université Lyon 1, 69500 Lyon, France; Service de génétique, centre des anomalies du développement, laboratoire de cytogénétique, hospices civils de Lyon, 69500 Bron, France
| | - P Cochat
- Université Lyon 1, 69500 Lyon, France; Service de néphrologie et rhumatologie pédiatrique, centre de référence des maladies rénales rares, Inserm U820, hospices civils de Lyon, 69500 Bron, France
| | - H De Leersnyder
- Centre de recherche en neurosciences de Lyon, Inserm U1028, CNRS UMR 5292, UCBL, équipe TIGER, 69500 Bron, France
| | - C Rigard
- UDEIP, centre de dépistage et de prise en charge des troubles psychiatriques d'origine génétique, centre hospitalier le Vinatier, 95, boulevard Pinel, 69678 Bron cedex, France; Centre de neurosciences cognitives, UMR 5229 CNRS, 69500 Bron, France
| | - P Franco
- Université Lyon 1, 69500 Lyon, France; Unité d'hypnologie, service de neuropédiatrie, Inserm U 628, hospices civils de Lyon, 69500 Bron, France
| | - V des Portes
- Université Lyon 1, 69500 Lyon, France; Centre de référence X fragile et autres déficiences intellectuelles de causes rares, hospices civils de Lyon, 69500 Bron, France
| | - P Edery
- Service de génétique, centre de référence des anomalies du développement et des syndromes malformatifs, hospices civils de Lyon, 69500 Bron, France; Université Lyon 1, 69500 Lyon, France; Centre de référence X fragile et autres déficiences intellectuelles de causes rares, hospices civils de Lyon, 69500 Bron, France
| | - C Demily
- UDEIP, centre de dépistage et de prise en charge des troubles psychiatriques d'origine génétique, centre hospitalier le Vinatier, 95, boulevard Pinel, 69678 Bron cedex, France; Centre de neurosciences cognitives, UMR 5229 CNRS, 69500 Bron, France; Université Lyon 1, 69500 Lyon, France
| |
Collapse
|
17
|
Alfei E, Raviglione F, Franceschetti S, D'Arrigo S, Milani D, Selicorni A, Riva D, Zuffardi O, Pantaleoni C, Binelli S. Seizures and EEG features in 74 patients with genetic-dysmorphic syndromes. Am J Med Genet A 2014; 164A:3154-61. [PMID: 25257908 DOI: 10.1002/ajmg.a.36746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/31/2014] [Indexed: 12/27/2022]
Abstract
Epilepsy is one of the most common findings in chromosome aberrations. Types of seizures and severity may significantly vary both between different conditions and within the same aberration. Hitherto specific seizures and EEG patterns are identified for only few syndromes. We studied 74 patients with defined genetic-dysmorphic syndromes with and without epilepsy in order to assess clinical and electroencephalographic features, to compare our observation with already described electro-clinical phenotypes, and to identify putative electroencephalographic and/or seizure characteristics useful to address the diagnosis. In our population, 10 patients had chromosomal disorders, 19 microdeletion or microduplication syndromes, and 32 monogenic syndromes. In the remaining 13, syndrome diagnosis was assessed on clinical grounds. Our study confirmed the high incidence of epilepsy in genetic-dysmorphic syndromes. Moreover, febrile seizures and neonatal seizures had a higher incidence compared to general population. In addition, more than one third of epileptic patients had drug-resistant epilepsy. EEG study revealed poor background organization in 42 patients, an excess of diffuse rhythmic activities in beta, alpha or theta frequency bands in 34, and epileptiform patterns in 36. EEG was completely normal only in 20 patients. No specific electro-clinical pattern was identified, except for inv-dup15, Angelman, and Rett syndromes. Nevertheless some specific conditions are described in detail, because of notable differences from what previously reported. Regarding the diagnostic role of EEG, we found that--even without any epileptiform pattern--the generation of excessive rhythmic activities in different frequency bandwidths might support the diagnosis of a genetic syndrome.
Collapse
Affiliation(s)
- Enrico Alfei
- Developmental Neurology Division, Carlo Besta Neurological Institute, I.R.C.C.S. Foundation, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maya I, Vinkler C, Konen O, Kornreich L, Steinberg T, Yeshaya J, Latarowski V, Shohat M, Lev D, Baris HN. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome. Am J Med Genet A 2014; 164A:1940-6. [PMID: 24788350 DOI: 10.1002/ajmg.a.36583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/28/2014] [Indexed: 11/06/2022]
Abstract
Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management.
Collapse
Affiliation(s)
- Idit Maya
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Carmona-Mora P, Molina J, Encina CA, Walz K. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the smith-magenis and the potocki-lupski syndromes. Curr Genomics 2011; 10:259-68. [PMID: 19949547 PMCID: PMC2709937 DOI: 10.2174/138920209788488508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/29/2022] Open
Abstract
Each human's genome is distinguished by extra and missing DNA that can be “benign” or powerfully impact everything from development to disease. In the case of genomic disorders DNA rearrangements, such as deletions or duplications, correlate with a clinical specific phenotype. The clinical presentations of genomic disorders were thought to result from altered gene copy number of physically linked dosage sensitive genes. Genomic disorders are frequent diseases (~1 per 1,000 births). Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders, associated with a deletion and a duplication, of 3.7 Mb respectively, within chromosome 17 band p11.2. This region includes 23 genes. Both syndromes have complex and distinctive phenotypes including multiple congenital and neurobehavioral abnormalities. Human chromosome 17p11.2 is syntenic to the 32-34 cM region of murine chromosome 11. The number and order of the genes are highly conserved. In this review, we will exemplify how genomic disorders can be modeled in mice and the advantages that such models can give in the study of genomic disorders in particular and gene copy number variation (CNV) in general. The contributions of the SMS and PTLS animal models in several aspects ranging from more specific ones, as the definition of the clinical aspects of the human clinical spectrum, the identification of dosage sensitive genes related to the human syndromes, to the more general contributions as the definition of genetic locus impacting obesity and behavior and the elucidation of general mechanisms related to the pathogenesis of gene CNV are discussed.
Collapse
|
20
|
Carmona-Mora P, Walz K. Retinoic Acid Induced 1, RAI1: A Dosage Sensitive Gene Related to Neurobehavioral Alterations Including Autistic Behavior. Curr Genomics 2011; 11:607-17. [PMID: 21629438 PMCID: PMC3078685 DOI: 10.2174/138920210793360952] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/08/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022] Open
Abstract
Genomic structural changes, such as gene Copy Number Variations (CNVs) are extremely abundant in the human genome. An enormous effort is currently ongoing to recognize and catalogue human CNVs and their associations with abnormal phenotypic outcomes. Recently, several reports related neuropsychiatric diseases (i.e. autism spectrum disorders, schizophrenia, mental retardation, behavioral problems, epilepsy) with specific CNV. Moreover, for some conditions, both the deletion and duplication of the same genomic segment are related to the phenotype. Syndromes associated with CNVs (microdeletion and microduplication) have long been known to display specific neurobehavioral traits. It is important to note that not every gene is susceptible to gene dosage changes and there are only a few dosage sensitive genes. Smith-Magenis (SMS) and Potocki-Lupski (PTLS) syndromes are associated with a reciprocal microdeletion and microduplication within chromosome 17p11.2. in humans. The dosage sensitive gene responsible for most phenotypes in SMS has been identified: the Retinoic Acid Induced 1 (RAI1). Studies on mouse models and humans suggest that RAI1 is likely the dosage sensitive gene responsible for clinical features in PTLS. In addition, the human RAI1 gene has been implicated in several neurobehavioral traits as spinocerebellar ataxia (SCA2), schizophrenia and non syndromic autism. In this review we discuss the evidence of RAI1 as a dosage sensitive gene, its relationship with different neurobehavioral traits, gene structure and mutations, and what is known about its molecular and cellular function, as a first step in the elucidation of the mechanisms that relate dosage sensitive genes with abnormal neurobehavioral outcomes.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
21
|
Carmona-Mora P, Encina CA, Canales CP, Cao L, Molina J, Kairath P, Young JI, Walz K. Functional and cellular characterization of human Retinoic Acid Induced 1 (RAI1) mutations associated with Smith-Magenis Syndrome. BMC Mol Biol 2010; 11:63. [PMID: 20738874 PMCID: PMC2939504 DOI: 10.1186/1471-2199-11-63] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/25/2010] [Indexed: 11/15/2022] Open
Abstract
Background Smith-Magenis Syndrome is a contiguous gene syndrome in which the dosage sensitive gene has been identified: the Retinoic Acid Induced 1 (RAI1). Little is known about the function of human RAI1. Results We generated the full-length cDNA of the wild type protein and five mutated forms: RAI1-HA 2687delC, RAI1-HA 3103delC, RAI1 R960X, RAI1-HA Q1562R, and RAI1-HA S1808N. Four of them have been previously associated with SMS clinical phenotype. Molecular weight, subcellular localization and transcription factor activity of the wild type and mutant forms were studied by western blot, immunofluorescence and luciferase assays respectively. The wild type protein and the two missense mutations presented a higher molecular weight than expected, localized to the nucleus and activated transcription of a reporter gene. The frameshift mutations generated a truncated polypeptide with transcription factor activity but abnormal subcellular localization, and the same was true for the 1-960aa N-terminal half of RAI1. Two different C-terminal halves of the RAI1 protein (1038aa-end and 1229aa-end) were able to localize into the nucleus but had no transactivation activity. Conclusion Our results indicate that transcription factor activity and subcellular localization signals reside in two separate domains of the protein and both are essential for the correct functionality of RAI1. The pathogenic outcome of some of the mutated forms can be explained by the dissociation of these two domains.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hino-Fukuyo N, Haginoya K, Uematsu M, Nakayama T, Kikuchi A, Kure S, Kamada F, Abe Y, Arai N, Togashi N, Onuma A, Tsuchiya S. Smith-Magenis syndrome with West syndrome in a 5-year-old girl: a long-term follow-up study. J Child Neurol 2009; 24:868-73. [PMID: 19264735 DOI: 10.1177/0883073808330186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smith-Magenis syndrome is characterized by multiple congenital anomalies and mental retardation caused by the heterozygous deletion of chromosomal region 17p11.2. We present a long-term follow-up study of a girl with Smith-Magenis syndrome and West syndrome. West syndrome became apparent at 7 months of age. Since then, mental retardation, particularly in terms of language development, became increasingly more obvious. The patient's spasms and hypsarrhythmia disappeared after a course of adrenocorticotropic hormone therapy, but focal seizures reappeared at the age of 3 years and 3 months. Her craniofacial dysmorphia and mental retardation became increasingly evident compared to her condition at the onset of West syndrome. Chromosome analysis detected the characteristic 17p deletion, which was then confirmed via fluorescent in situ hybridization analysis. This is the second report of a patient with Smith-Magenis syndrome and West syndrome; taken together, these results suggest that Smith-Magenis syndrome may be a further cause of West syndrome.
Collapse
Affiliation(s)
- Naomi Hino-Fukuyo
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim HS, Yim SV, Jung KH, Zheng LT, Kim YH, Lee KH, Chung SY, Rha HK. Altered DNA copy number in patients with different seizure disorder type: by array-CGH. Brain Dev 2007; 29:639-43. [PMID: 17573221 DOI: 10.1016/j.braindev.2007.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 03/30/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Epilepsy is one of the most common but genetically complex neurological disorders in children. Previous studies have showed that chromosomal abnormalities confer susceptibility to epilepsy. To identify new chromosomal abnormalities associated with epilepsy, DNA samples from patients with idiopathic generalized epilepsy (IGE), partial epilepsy (PE), and febrile seizures (FS) were analyzed using array comparative genome hybridization technique (array-CGH). Genomic aberrations were detected throughout whole chromosome. The most frequently altered loci were gains noted in: 1p (60%), 5p (55%), 8q (55%), 10q (55%), and losses in 7q (55%). The most frequent chromosomal aberrations for each seizure type were: IGE-1p (60%), 5p (55%), and 10q (55%), PE-11p (45%), 21q (45%) and FS-8q (55%), and losses in 7q (55%). To validate the array-CGH results, real time PCR was performed for several genes (EPM2AIP1, OSM, AFP, CYP19A1, SLC6A13, and COL6A2). The results from the real time PCR were consistent with those from the array-CGH. Therefore, we found that the three types of seizures disorder studied have different chromosomal aberrations. These results might be used for further investigation of the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Hye Sung Kim
- Catholic Neuroscience Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Edelman EA, Girirajan S, Finucane B, Patel PI, Lupski JR, Smith ACM, Elsea SH. Gender, genotype, and phenotype differences in Smith-Magenis syndrome: a meta-analysis of 105 cases. Clin Genet 2007; 71:540-50. [PMID: 17539903 DOI: 10.1111/j.1399-0004.2007.00815.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smith-Magenis syndrome (SMS) is a multisystem disorder characterized by developmental delay and mental retardation, a distinctive behavioral phenotype, and sleep disturbance. We undertook a comprehensive meta-analysis to identify genotype-phenotype relationships to further understand the clinical variability and genetic factors involved in SMS. Clinical and molecular information on 105 patients with SMS was obtained through research protocols and a review of the literature and analyzed using Fisher's exact test with two-tailed p values. Several differences in these groups of patients were identified based on genotype and gender. Patients with RAI1 mutation were more likely to exhibit overeating, obesity, polyembolokoilamania, self-hugging, muscle cramping, and dry skin and less likely to have short stature, hearing loss, frequent ear infections, and heart defects when compared with patients with deletion, while a subset of small deletion cases with deletions spanning from TNFRSF13B to MFAP4 was less likely to exhibit brachycephaly, dental anomalies, iris abnormalities, head-banging, and hyperactivity. Significant differences between genders were also identified, with females more likely to have myopia, eating/appetite problems, cold hands and feet, and frustration with communication when compared with males. These results confirm previous findings and identify new genotype-phenotype associations including differences in the frequency of short stature, hearing loss, ear infections, obesity, overeating, heart defects, self-injury, self-hugging, dry skin, seizures, and hyperactivity among others based on genotype. Additional studies are required to further explore the relationships between genotype and phenotype and any potential discrepancies in health care and parental attitudes toward males and females with SMS.
Collapse
Affiliation(s)
- E A Edelman
- Department of Human Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Potocki L, Bi W, Treadwell-Deering D, Carvalho CMB, Eifert A, Friedman EM, Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw C, Shi X, Weissenberger G, Withers M, Yatsenko SA, Zackai EH, Stankiewicz P, Lupski JR. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 2007; 80:633-49. [PMID: 17357070 PMCID: PMC1852712 DOI: 10.1086/512864] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/17/2007] [Indexed: 12/26/2022] Open
Abstract
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.
Collapse
Affiliation(s)
- Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee JA, Lupski JR. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 2006; 52:103-21. [PMID: 17015230 DOI: 10.1016/j.neuron.2006.09.027] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genomic disorders are a group of human genetic diseases caused by genomic rearrangements resulting in copy-number variation (CNV) affecting a dosage-sensitive gene or genes critical for normal development or maintenance. These disorders represent a wide range of clinically distinct entities but include many diseases affecting nervous system function. Herein, we review selected neurodevelopmental, neurodegenerative, and psychiatric disorders either known or suggested to be caused by genomic rearrangement and CNV. Further, we emphasize the cause-and-effect relationship between gene CNV and complex disease traits. We also discuss the prevalence and heritability of CNV, the correlation between CNV and higher-order genome architecture, and the heritability of personality, behavioral, and psychiatric traits. We speculate that CNV could underlie a significant proportion of normal human variation including differences in cognitive, behavioral, and psychological features.
Collapse
Affiliation(s)
- Jennifer A Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | |
Collapse
|
27
|
Madduri N, Peters SU, Voigt RG, Llorente AM, Lupski JR, Potocki L. Cognitive and adaptive behavior profiles in Smith-Magenis syndrome. J Dev Behav Pediatr 2006; 27:188-92. [PMID: 16775514 DOI: 10.1097/00004703-200606000-00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Smith-Magenis syndrome (SMS) is a multiple congenital anomalies and mental retardation syndrome associated with an interstitial deletion of chromosome 17 band p11.2. The incidence of this microdeletion syndrome is estimated to be 1 in 25,000 individuals. Persons with SMS have a distinctive neurobehavioral phenotype that is characterized by aggressive and self-injurious behaviors and significant sleep disturbances. From December 1990 through September 1999, 58 persons with SMS were enrolled in a 5-day multidisciplinary clinical protocol. Developmental assessments consisting of cognitive level and adaptive behavior were completed in 57 persons. Most patients functioned in the mild-to-moderate range of mental retardation. In addition, we report that patients with SMS have low adaptive functioning with relative strengths in socialization and relative weakness in daily living skills. These data were analyzed in light of the molecular extent of the microdeletion within 17p11.2. We found that the level of cognitive and adaptive functioning does depend on deletion size, and that a small percentage of SMS patients have cognitive function in the borderline range.
Collapse
Affiliation(s)
- Niru Madduri
- Meyer Center for Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, TX 77030, USA
| | | | | | | | | | | |
Collapse
|