1
|
Bettinger CM, Dulz S, Atiskova Y, Guerreiro H, Schön G, Guder P, Maier SL, Denecke J, Bley AE. Overview of Neuro-Ophthalmic Findings in Leukodystrophies. J Clin Med 2024; 13:5114. [PMID: 39274327 PMCID: PMC11396446 DOI: 10.3390/jcm13175114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Leukodystrophies are a group of rare genetic diseases that primarily affect the white matter of the central nervous system. The broad spectrum of metabolic and pathological causes leads to manifestations at any age, most often in childhood and adolescence, and a variety of symptoms. Leukodystrophies are usually progressive, resulting in severe disabilities and premature death. Progressive visual impairment is a common symptom. Currently, no overview of the manifold neuro-ophthalmologic manifestations and visual impact of leukodystrophies exists. Methods: Data from 217 patients in the Hamburg leukodystrophy cohort were analyzed retrospectively for neuro-ophthalmologic manifestations, age of disease onset, and magnetic resonance imaging, visual evoked potential, and optical coherence tomography findings and were compared with data from the literature. Results: In total, 68% of the patients suffered from neuro-ophthalmologic symptoms, such as optic atrophy, visual neglect, strabismus, and nystagmus. Depending on the type of leukodystrophy, neuro-ophthalmologic symptoms occurred early or late during the course of the disease. Magnetic resonance imaging scans revealed pathologic alterations in the visual tract that were temporally correlated with symptoms. Conclusions: The first optical coherence tomography findings in Krabbe disease and metachromatic leukodystrophy allow retinal assessments. Comprehensive literature research supports the results of this first overview of neuro-ophthalmologic findings in leukodystrophies.
Collapse
Affiliation(s)
| | - Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Helena Guerreiro
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gerhard Schön
- Center of Experimental Medicine, Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Philipp Guder
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sarah Lena Maier
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jonas Denecke
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette E Bley
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
2
|
Muthiah A, Housley GD, Klugmann M, Fröhlich D. The Leukodystrophies HBSL and LBSL-Correlates and Distinctions. Front Cell Neurosci 2021; 14:626610. [PMID: 33574740 PMCID: PMC7870476 DOI: 10.3389/fncel.2020.626610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) accurately charge tRNAs with their respective amino acids. As such, they are vital for the initiation of cytosolic and mitochondrial protein translation. These enzymes have become increasingly scrutinized in recent years for their role in neurodegenerative disorders caused by the mutations of ARS-encoding genes. This review focuses on two such genes-DARS1 and DARS2-which encode cytosolic and mitochondrial aspartyl-tRNA synthetases, and the clinical conditions associated with mutations of these genes. We also describe attempts made at modeling these conditions in mice, which have both yielded important mechanistic insights. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a disease caused by a range of mutations in the DARS2 gene, initially identified in 2003. Ten years later, hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by mutations of cytosolic DARS1, was discovered. Multiple parallels have been drawn between the two conditions. The Magnetic Resonance Imaging (MRI) patterns are strikingly similar, but still set these two conditions apart from other leukodystrophies. Clinically, both conditions are characterized by lower limb spasticity, often associated with other pyramidal signs. However, perhaps due to earlier detection, a wider range of symptoms, including peripheral neuropathy, as well as visual and hearing changes have been described in LBSL patients. Both HBSL and LBSL are spectrum disorders lacking genotype to phenotype correlation. While the fatal phenotype of Dars1 or Dars2 single gene deletion mouse mutants revealed that the two enzymes lack functional redundancy, further pursuit of disease modeling are required to shed light onto the underlying disease mechanism, and enable examination of experimental treatments, including gene therapies.
Collapse
Affiliation(s)
| | | | | | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
3
|
Finsterer J, Zarrouk-Mahjoub S. Involvement of the Spinal Cord in Mitochondrial Disorders. J Neurosci Rural Pract 2019; 9:245-251. [PMID: 29725177 PMCID: PMC5912032 DOI: 10.4103/jnrp.jnrp_446_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review aims at summarising and discussing the current status concerning the clinical presentation, pathogenesis, diagnosis, and treatment of spinal cord affection in mitochondrial disorders (MIDs). A literature search using the database Pubmed was carried out by application of appropriate search terms and their combinations. Involvement of the spinal cord in MIDs is more frequent than anticipated. It occurs in specific and non-specific MIDs. Among the specific MIDs it has been most frequently described in LBSL, LS, MERRF, KSS, IOSCA, MIRAS, and PCH and only rarely in MELAS, CPEO, and LHON. Clinically, spinal cord involvement manifests as monoparesis, paraparesis, quadruparesis, sensory disturbances, hypotonia, spasticity, urinary or defecation dysfunction, spinal column deformities, or as transverse syndrome. Diagnosing spinal cord involvement in MIDs requires a thoroughly taken history, clinical exam, and imaging studies. Additionally, transcranial magnetic stimulation, somato-sensory-evoked potentials, and cerebro-spinal fluid can be supportive. Treatment is generally not at variance compared to the underlying MID but occasionally surgical stabilisation of the spinal column may be necessary. It is concluded that spinal cord involvement in MIDs is more frequent than anticipated but may be missed if cerebral manifestations prevail. Spinal cord involvement in MIDs may strongly determine the mobility of these patients.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Sinda Zarrouk-Mahjoub
- Pasteur Institute of Tunis, University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia
| |
Collapse
|
4
|
Tonduti D, Panteghini C, Pichiecchio A, Decio A, Carecchio M, Reale C, Moroni I, Nardocci N, Campistol J, Garcia-Cazorla A, Perez Duenas B, Chiapparini L, Garavaglia B, Orcesi S. Encephalopathies with intracranial calcification in children: clinical and genetic characterization. Orphanet J Rare Dis 2018; 13:135. [PMID: 30111349 PMCID: PMC6094574 DOI: 10.1186/s13023-018-0854-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/21/2018] [Indexed: 01/11/2023] Open
Abstract
Background We present a group of patients affected by a paediatric onset genetic encephalopathy with cerebral calcification of unknown aetiology studied with Next Generation Sequencing (NGS) genetic analyses. Methods We collected all clinical and radiological data. DNA samples were tested by means of a customized gene panel including fifty-nine genes associated with known genetic diseases with cerebral calcification. Results We collected a series of fifty patients. All patients displayed complex and heterogeneous phenotypes mostly including developmental delay and pyramidal signs and less frequently movement disorder and epilepsy. Signs of cerebellar and peripheral nervous system involvement were occasionally present. The most frequent MRI abnormality, beside calcification, was the presence of white matter alterations; calcification was localized in basal ganglia and cerebral white matter in the majority of cases. Sixteen out of fifty patients tested positive for mutations in one of the fifty-nine genes analyzed. In fourteen cases the analyses led to a definite genetic diagnosis while results were controversial in the remaining two. Conclusions Genetic encephalopathies with cerebral calcification are usually associated to complex phenotypes. In our series, a molecular diagnosis was achieved in 32% of cases, suggesting that the molecular bases of a large number of disorders are still to be elucidated. Our results confirm that cerebral calcification is a good criterion to collect homogeneous groups of patients to be studied by exome or whole genome sequencing; only a very close collaboration between clinicians, neuroradiologists and geneticists can provide better results from these new generation molecular techniques.
Collapse
Affiliation(s)
- Davide Tonduti
- Child Neurology Unit, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy. .,Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy.
| | - Celeste Panteghini
- Molecular Neurogenetics Unit, Movement Disorders Diagnostic Section, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Anna Pichiecchio
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Alice Decio
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.,Neuropsychiatry and Neurorehabilitation Unit, IRCCS Medea, Bosisio Parini Lecco, Italy
| | - Miryam Carecchio
- Child Neurology Unit, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy.,Molecular Neurogenetics Unit, Movement Disorders Diagnostic Section, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy.,Department of Medicine and Surgery, PhD Programme in Molecular and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Chiara Reale
- Molecular Neurogenetics Unit, Movement Disorders Diagnostic Section, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Nardo Nardocci
- Child Neurology Unit, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Jaume Campistol
- Department of Child Neurology, Pediatric Research Institute, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Angela Garcia-Cazorla
- Department of Child Neurology, Pediatric Research Institute, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Belen Perez Duenas
- Department of Child Neurology, Pediatric Research Institute, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Luisa Chiapparini
- Department of Neuroradiology, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Barbara Garavaglia
- Molecular Neurogenetics Unit, Movement Disorders Diagnostic Section, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
5
|
Ardissone A, Tonduti D, Legati A, Lamantea E, Barone R, Dorboz I, Boespflug-Tanguy O, Nebbia G, Maggioni M, Garavaglia B, Moroni I, Farina L, Pichiecchio A, Orcesi S, Chiapparini L, Ghezzi D. KARS-related diseases: progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature. Orphanet J Rare Dis 2018; 13:45. [PMID: 29615062 PMCID: PMC5883414 DOI: 10.1186/s13023-018-0788-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
Background KARS encodes lysyl- transfer ribonucleic acid (tRNA) synthetase, which catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and mitochondria. Eleven families/sporadic patients and 16 different mutations in KARS have been reported to date. The associated clinical phenotype is heterogeneous ranging from early onset encephalopathy to isolated peripheral neuropathy or nonsyndromic hearing impairment. Recently additional presentations including leukoencephalopathy as predominant cerebral involvement or cardiomyopathy, isolated or associated with muscular and cerebral involvement, have been reported. A progressive Leukoencephalopathy with brainstem and spinal cord calcifications was previously described in a singleton patient and in two siblings, without the identification of the genetic cause. We reported here about a new severe phenotype associated with biallelic KARS mutations and sharing some common points with the other already reported phenotypes, but with a distinct clinical and neuroimaging picture. Review of KARS mutant patients published to date will be also discussed. Results Herein, we report the clinical, biochemical and molecular findings of 2 unreported Italian patients affected by developmental delay, acquired microcephaly, spastic tetraparesis, epilepsy, sensory-neural hypoacusia, visual impairment, microcytic hypochromic anaemia and signs of hepatic dysfunction. MRI pattern in our patients was characterized by progressive diffuse leukoencephalopathy and calcifications extending in cerebral, brainstem and cerebellar white matter, with spinal cord involvement. Genetic analysis performed on these 2 patients and in one subject previously described with similar MRI pattern revealed the presence of biallelic mutations in KARS in all 3 subjects. Conclusions With our report we define the molecular basis of the previously described Leukoencephalopathy with Brainstem and Spinal cord Calcification widening the spectrum of KARS related disorders, particularly in childhood onset disease suggestive for mitochondrial impairment. The review of previous cases does not suggest a strict and univocal genotype/phenotype correlation for this highly heterogeneous entity. Moreover, our cases confirm the usefulness of search for common brain and spine MR imaging pattern and of broad genetic screening, in syndromes clinically resembling mitochondrial disorders in spite of normal biochemical assay. Electronic supplementary material The online version of this article (10.1186/s13023-018-0788-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Ardissone
- Child Neurology, Foundation IRCCS Neurological Institute "C. Besta", Via Celoria 11, 20133, Milan, Italy. .,Department of Molecular and Translational Medicine DIMET, University of Milan-Bicocca, Milan, Italy.
| | - Davide Tonduti
- Child Neurology, Foundation IRCCS Neurological Institute "C. Besta", Via Celoria 11, 20133, Milan, Italy
| | - Andrea Legati
- Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Eleonora Lamantea
- Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Imen Dorboz
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, France, Paris 06, Paris, France
| | - Odile Boespflug-Tanguy
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, France, Paris 06, Paris, France.,AP-HP, Department of Neuropediatrics and Metabolic Diseases, National Reference Center for Leukodystrophies, Robert Debré Hospital, Paris, France
| | - Gabriella Nebbia
- Service of Paediatric Hepatology, Department of Paediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Pathology, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Barbara Garavaglia
- Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Isabella Moroni
- Child Neurology, Foundation IRCCS Neurological Institute "C. Besta", Via Celoria 11, 20133, Milan, Italy
| | - Laura Farina
- Neuroradiology, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS C. Mondino National Neurological Institute, Pavia, Italy
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Luisa Chiapparini
- Neuroradiology, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Finsterer J, Zarrouk-Mahjoub S. Phenotypic spectrum of DARS2 mutations. J Neurol Sci 2017; 376:117-118. [PMID: 28431594 DOI: 10.1016/j.jns.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar, Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
7
|
Abstract
INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as 'definite', 'probable' or 'possible' according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients ('definite' = 5; 'probable' = 9; 'possible' = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient's abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem.
Collapse
Affiliation(s)
| | - Marlies Frank
- First Medical Department, Krankenanstalt Rudolfstiftung, Austria
| |
Collapse
|
8
|
Livingston JH, Stivaros S, Warren D, Crow YJ. Intracranial calcification in childhood: a review of aetiologies and recognizable phenotypes. Dev Med Child Neurol 2014; 56:612-26. [PMID: 24372060 DOI: 10.1111/dmcn.12359] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 12/24/2022]
Abstract
Intracranial calcification (ICC) is a common finding on neuroimaging in paediatric neurology practice. In approximately half of all cases the calcification occurs in damaged, neoplastic, or malformed brain. For the large number of other disorders in which ICC occurs, no common pathogenetic mechanism can be suggested. Congenital infection, particularly with cytomegalovirus, accounts for a significant proportion of all cases. However, some genetic diseases, in particular Aicardi-Goutières syndrome, Band-like calcification, and RNASET2-related disease, may mimic congenital infection; therefore, a full consideration of the radiological and clinical features is necessary before concluding that congenital infection is the cause. In some disorders calcification is a universal finding, in others it is a frequent occurrence, and in some it is only an occasional finding. Characteristic patterns of calcification are seen in a number of conditions, and a systematic approach to the identification and description of radiological findings, taken together in the context of the clinical scenario, allows a diagnosis to be made in many cases. Nonetheless, there remain a number of presumed genetic disorders associated with ICC for which the underlying molecular cause has not yet been identified.
Collapse
Affiliation(s)
- John H Livingston
- Department of Paediatric Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | |
Collapse
|
9
|
Schwenzer H, Zoll J, Florentz C, Sissler M. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:247-92. [PMID: 23824528 DOI: 10.1007/128_2013_457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are considered as the powerhouse of eukaryotic cells. They host several central metabolic processes fueling the oxidative phosphorylation pathway (OXPHOS) that produces ATP from its precursors ADP and inorganic phosphate Pi (PPi). The respiratory chain complexes responsible for the OXPHOS pathway are formed from complementary sets of protein subunits encoded by the nuclear genome and the mitochondrial genome, respectively. The expression of the mitochondrial genome requires a specific and fully active translation machinery from which aminoacyl-tRNA synthetases (aaRSs) are key actors. Whilst the macromolecules involved in mammalian mitochondrial translation have been under investigation for many years, there has been an explosion of interest in human mitochondrial aaRSs (mt-aaRSs) since the discovery of a large (and growing) number of mutations in these genes that are linked to a variety of neurodegenerative disorders. Herein we will review the present knowledge on mt-aaRSs in terms of their biogenesis, their connection to mitochondrial respiration, i.e., the respiratory chain (RC) complexes, and to the mitochondrial translation machinery. The pathology-related mutations detected so far are described, with special attention given to their impact on mt-aaRSs biogenesis, functioning, and/or subsequent activities. The collected data to date shed light on the diverse routes that are linking primary molecular possible impact of a mutation to its phenotypic expression. It is envisioned that a variety of mechanisms, inside and outside the translation machinery, would play a role on the heterogeneous manifestations of mitochondrial disorders.
Collapse
Affiliation(s)
- Hagen Schwenzer
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC, 15 rue René Descartes, 67084, Strasbourg Cedex, France,
| | | | | | | |
Collapse
|
10
|
Orcesi S, Tonduti D, La Piana R. Calcifying leukoencephalopathies: new overlapping phenotypes. Am J Med Genet A 2012; 158A:964-5. [PMID: 22419650 DOI: 10.1002/ajmg.a.35242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/16/2011] [Indexed: 11/06/2022]
|