1
|
Balagura G, Xian J, Riva A, Marchese F, Ben Zeev B, Rios L, Sirsi D, Accorsi P, Amadori E, Astrea G, Baldassari S, Beccaria F, Boni A, Budetta M, Cantalupo G, Capovilla G, Cesaroni E, Chiesa V, Coppola A, Dilena R, Faggioli R, Ferrari A, Fiorini E, Madia F, Gennaro E, Giacomini T, Giordano L, Iacomino M, Lattanzi S, Marini C, Mancardi MM, Mastrangelo M, Messana T, Minetti C, Nobili L, Papa A, Parmeggiani A, Pisano T, Russo A, Salpietro V, Savasta S, Scala M, Accogli A, Scelsa B, Scudieri P, Spalice A, Specchio N, Trivisano M, Tzadok M, Valeriani M, Vari MS, Verrotti A, Vigevano F, Vignoli A, Toonen R, Zara F, Helbig I, Striano P. Epilepsy Course and Developmental Trajectories in STXBP1-DEE. Neurol Genet 2022; 8:e676. [PMID: 35655584 PMCID: PMC9157582 DOI: 10.1212/nxg.0000000000000676] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023]
Abstract
Background and Objectives Clinical manifestations in STXBP1 developmental and epileptic encephalopathy (DEE) vary in severity and outcome, and the genotypic spectrum is diverse. We aim to trace the neurodevelopmental trajectories in individuals with STXBP1-DEE and dissect the relationship between neurodevelopment and epilepsy. Methods Retrospective standardized clinical data were collected through international collaboration. A composite neurodevelopmental score system compared the developmental trajectories in STXBP1-DEE. Results Forty-eight patients with de novo STXBP1 variants and a history of epilepsy were included (age range at the time of the study: 10 months to 35 years, mean 8.5 years). At the time of inclusion, 65% of individuals (31/48) had active epilepsy, whereas 35% (17/48) were seizure free, and 76% of those (13/17) achieved remission within the first year of life. Twenty-two individuals (46%) showed signs of developmental impairment and/or neurologic abnormalities before epilepsy onset. Age at seizure onset correlated with severity of developmental outcome and the developmental milestones achieved, with a later seizure onset associated with better developmental outcome. In contrast, age at seizure remission and epilepsy duration did not affect neurodevelopmental outcomes. Overall, we did not observe a clear genotype-phenotype correlation, but monozygotic twins with de novo STXBP1 variant showed similar phenotype and parallel disease course. Discussion The disease course in STXBP1-DEE presents with 2 main trajectories, with either early seizure remission or drug-resistant epilepsy, and a range of neurodevelopmental outcomes from mild to profound intellectual disability. Age at seizure onset is the only epilepsy-related feature associated with neurodevelopment outcome. These findings can inform future dedicated natural history studies and trial design.
Collapse
|
2
|
Moog M, Baraban SC. Clemizole and Trazodone are Effective Antiseizure Treatments in a Zebrafish Model of STXBP1 Disorder. Epilepsia Open 2022; 7:504-511. [PMID: 35451230 PMCID: PMC9436285 DOI: 10.1002/epi4.12604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022] Open
Abstract
CRISPR-Cas9-generated zebrafish carrying a 12 base-pair deletion in stxbpb1b, a paralog sharing 79% amino acid sequence identity with human, exhibit spontaneous electrographic seizures during larval stages of development. Zebrafish stxbp1b mutants provide an efficient preclinical platform to test antiseizure therapeutics. The present study was designed to test antiseizure medications approved for clinical use and two recently identified repurposed drugs with antiseizure activity. Larval homozygous stxbp1b zebrafish (4 days post-fertilization) were agarose-embedded and monitored for electrographic seizure activity using a local field recording electrode placed in midbrain. Frequency of ictal-like events was evaluated at baseline and following 45 min of continuous drug exposure (1 mM, bath application). Analysis was performed on coded files by an experimenter blinded to drug treatment and genotype. Phenytoin, valproate, ethosuximide, levetiracetam, and diazepam had no effect on ictal-like event frequency in stxbp1b mutant zebrafish. Clemizole and trazodone decreased ictal-like event frequency in stxbp1b mutant zebrafish by 80% and 83%, respectively. These results suggest that repurposed drugs with serotonin receptor binding affinities could be effective antiseizure treatments. Clemizole and trazodone were previously identified in a larval zebrafish model for Dravet syndrome. Based primarily on these preclinical zebrafish studies, compassionate-use and double-blind clinical trials with both drugs have progressed. The present study extends this approach to a preclinical zebrafish model representing STXBP1-related disorders, and suggests that future clinical studies may be warranted.
Collapse
Affiliation(s)
- Maia Moog
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Scott C. Baraban
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
3
|
Liu L, Liu F, Wang Q, Xie H, Li Z, Lu Q, Wang Y, Zhang M, Zhang Y, Picker J, Cui X, Zou L, Chen X. Confirming the contribution and genetic spectrum of de novo mutation in infantile spasms: Evidence from a Chinese cohort. Mol Genet Genomic Med 2021; 9:e1689. [PMID: 33951346 PMCID: PMC8222834 DOI: 10.1002/mgg3.1689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
Objective We determined the yield, genetic spectrum, and actual origin of de novo mutations (DNMs) for infantile spasms (ISs) in a Chinese cohort. The efficacy of levetiracetam (LEV) for STXBP1‐related ISs was explored also. Methods Targeted sequencing of 153 epilepsy‐related candidate genes was applied to 289 Chinese patients with undiagnosed ISs. Trio‐based amplicon deep sequencing was used for all DNMs to distinguish somatic/mosaic mutations from germline ones. Results Total of 26 DNMs were identified from 289 recruited Chinese patients with undiagnosed ISs. Among them, 24 DNMs were interpreted as pathogenic mutations based on American College of Medical Genetics and Genomics guidelines, contributing to 8.3% (24/289) of diagnosis yield in the Chinese IS cohort. CDKL5 and STXBP1 are the top genes with recurrent DNMs, accounting for 3.1% (9/289) of yield. Further deep resequencing for the trio members showed that 22.7% (5/22) of DNMs are actually somatic in the proband or a parent. These somatic carriers presented milder seizure attacks than those with true germline DNMs. After treatment with LEV for half a year, three patients with DNM in STXBP1 showed improved clinical symptoms, including seizure‐free and normal electroencephalogram, except for a patient with a second DNM in DIAPH3. Significance Our study confirmed the contribution and genetic spectrum of DNMs in Chinese IS patients. Somatic mutation account for a quarter of DNMs in IS cases. Treatment with LEV improved the prognosis of STXBP1‐related ISs.
Collapse
Affiliation(s)
- Liying Liu
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Fang Liu
- Graduate School of Peking, Union Medical College, Beijing, China.,Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qiuhong Wang
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Zhengchang Li
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qian Lu
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yangyang Wang
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Mengna Zhang
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yu Zhang
- Department of Lab Center, Capital Institute of Pediatrics, Beijing, China
| | - Jonathan Picker
- Division of Genetics & Genomics (Department of Medicine) and Department of Child & Adolescent Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Xiaodai Cui
- Department of Lab Center, Capital Institute of Pediatrics, Beijing, China
| | - Liping Zou
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
4
|
Abramov D, Guiberson NGL, Burré J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J Neurochem 2021; 157:165-178. [PMID: 32643187 PMCID: PMC7812771 DOI: 10.1111/jnc.15120] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Mutations in Munc18-1/STXBP1 (syntaxin-binding protein 1) are linked to various severe early epileptic encephalopathies and neurodevelopmental disorders. Heterozygous mutations in the STXBP1 gene include missense, nonsense, frameshift, and splice site mutations, as well as intragenic deletions and duplications and whole-gene deletions. No genotype-phenotype correlation has been identified so far, and patients are treated by anti-epileptic drugs because of the lack of a specific disease-modifying therapy. The molecular disease mechanisms underlying STXBP1-linked disorders are yet to be fully understood, but both haploinsufficiency and dominant-negative mechanisms have been proposed. This review focuses on the current understanding of the phenotypic spectrum of STXBP1-linked disorders, as well as discusses disease mechanisms in the context of the numerous pathways in which STXBP1 functions in the brain. We additionally evaluate the available animal models to study these disorders and highlight potential therapeutic approaches for treating these devastating diseases.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Abstract
Seizures are the most acute evident manifestation of central nervous system dysfunction in neonates. The incidence is higher in very low weight neonates, about 58/100 live births, as opposed to full-term infants, estimated about 3.5/100 live births. Neonatal seizures represent the clinical manifestation of a non-specific disorder of cortical cerebral dysfunction, which could lead to permanent brain injury. The etiology is multifactorial and requires a judicious assessment of each clinical scenario. The diagnosis and its management are further complicated as most neonatal seizures may have very subtle or no clinical changes and the diagnosis may be just based on EEG findings, so-called subclinical. The treatment is dependent on the etiology, but early and opportune intervention can prevent further brain damage and improve prognosis. Although early identification and treatment are essential, the diagnosis of neonatal seizures can be further complicated by the clinical presentations, possible etiologies, and treatments. Nevertheless, research studies and clinical evidence have shown that early treatment with anti-seizure medications can change the outcome.
Collapse
Affiliation(s)
- Edgar Andrade
- Pediatric Neurology, Institute of Pediatric Neurosciences of Florida, Ocala, USA
| | | | - Zakir I Shaikh
- Pediatrics, Surat Municipal Institute of Medical Education and Research, Surat, IND
| | - Alcy R Torres
- Pediatrics, Boston University School of Medicine, Boston, USA
| |
Collapse
|
6
|
Ko A, Kang HC. Frequently Identified Genetic Developmental and Epileptic Encephalopathy: A Review Focusing on Precision Medicine. ANNALS OF CHILD NEUROLOGY 2019. [DOI: 10.26815/acn.2019.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Li T, Cheng M, Wang J, Hong S, Li M, Liao S, Xie L, Jiang L. De novo mutations of STXBP1 in Chinese children with early onset epileptic encephalopathy. GENES BRAIN AND BEHAVIOR 2018; 17:e12492. [PMID: 29896790 DOI: 10.1111/gbb.12492] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
Abstract
To detect syntaxin-binding protein 1 (STXBP1) mutations in Chinese patients with early onset epileptic encephalopathy (EOEE) of unknown etiology. Targeted next-generation sequencing was used to identify STXBP1 mutations in 143 Chinese patients with EOEE of unknown etiology. A filtering process was applied to prioritize rare variants of potential functional significance. Then Sanger sequencing was employed to validate the parental origin of the variants. Detailed clinical and genetic data were collected for 9 STXBP1-positive patients. Eight de novo heterozygous STXBP1 mutations were identified in 9 patients; 5 were novel mutations (c.1155delC, c.1030-1G>A, c.217G>C, c.268G>C, c.1480_1481 insT) and 3 were previously reported (c.1216C> T, c.1217G>A [2 cases], c.875G>A). Two patients had Ohtahara syndrome and 1 had West syndrome at onset, whereas the other 6 presented with EOEE that did not fit a specific recognized epilepsy syndrome. Six of these patients later evolved to West syndrome. All but 2 cases were prescribed more than 2 antiepileptic drugs (AEDs) plus other regimens. Four subjects showed good responses to levetiracetam (LEV) alone or in combination with other AEDs, and one case (1/3) achieved complete freedom from seizures with a ketogenic diet (KD). All patients exhibited severe to profound global developmental delay. Five novel heterozygous de novo STXBP1 mutations were discovered in patients with EOEE from China. STXBP1 mutational analysis should be performed in cases of EOEE of unknown etiology. LEV as monotherapy or adjunctive therapy with other regimens, as well as KD should be considered for management of this patient group.
Collapse
Affiliation(s)
- T Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - M Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - J Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - S Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - M Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - S Liao
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - L Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - L Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| |
Collapse
|
8
|
Stamberger H, Weckhuysen S, De Jonghe P. STXBP1 as a therapeutic target for epileptic encephalopathy. Expert Opin Ther Targets 2017; 21:1027-1036. [DOI: 10.1080/14728222.2017.1386175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hannah Stamberger
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter De Jonghe
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
9
|
Suri M, Evers JMG, Laskowski RA, O'Brien S, Baker K, Clayton-Smith J, Dabir T, Josifova D, Joss S, Kerr B, Kraus A, McEntagart M, Morton J, Smith A, Splitt M, Thornton JM, Wright CF. Protein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1. Mol Genet Genomic Med 2017; 5:495-507. [PMID: 28944233 PMCID: PMC5606886 DOI: 10.1002/mgg3.304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 01/07/2023] Open
Abstract
Background Syntaxin‐binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss‐of‐function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype–phenotype correlations. Methods We report 11 patients with pathogenic de novo mutations in STXBP1 identified in the first 4293 trios of the Deciphering Developmental Disorder (DDD) study, including six missense variants. We analyzed the structural locations of the pathogenic missense variants from this study and the literature, as well as population missense variants extracted from Exome Aggregation Consortium (ExAC). Results Pathogenic variants are significantly more likely to occur at highly conserved locations than population variants, and be buried inside the protein domain. Pathogenic mutations are also more likely to destabilize the domain structure compared with population variants, increasing the proportion of (partially) unfolded domains that are prone to aggregation or degradation. We were unable to detect any genotype–phenotype correlation, but unlike previously reported cases, most of the DDD patients with STXBP1 pathogenic variants did not present with very early‐onset or severe epilepsy and encephalopathy, though all have developmental delay with intellectual disability and most display behavioral problems and suffered seizures in later childhood. Conclusion Variants across STXBP1 that cause loss of function can result in severe intellectual disability with or without seizures, consistent with a haploinsufficiency mechanism. Pathogenic missense mutations act through destabilization of the protein domain, making it prone to aggregation or degradation. The presence or absence of early seizures may reflect ascertainment bias in the literature as well as the broad recruitment strategy of the DDD study.
Collapse
Affiliation(s)
- Mohnish Suri
- Nottingham Regional Genetics ServiceNottingham University Hospitals NHS TrustCity Hospital Campus, The Gables, Hucknall RoadNottinghamNG5 1PBUK
| | - Jochem M G Evers
- European Bioinformatics Institute (EMBL-EBI)Wellcome Genome Campus, HinxtonCambridgeCB10 1SDUK
| | - Roman A Laskowski
- European Bioinformatics Institute (EMBL-EBI)Wellcome Genome Campus, HinxtonCambridgeCB10 1SDUK
| | - Sinead O'Brien
- MRC Cognition and Brain Sciences Unit15 Chaucer RoadCambridgeCB2 7EFUK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit15 Chaucer RoadCambridgeCB2 7EFUK.,Department of Medical GeneticsUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0QQUK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterM13 9WLUK
| | - Tabib Dabir
- Northern Ireland Regional Genetics CentreBelfast Health and Social Care TrustBelfast City HospitalLisburn RoadBelfastBT9 7ABUK
| | - Dragana Josifova
- South East Thames Regional Genetics CentreGuy's and St Thomas' NHS Foundation TrustGuy's HospitalGreat Maze PondLondonSE1 9RTUK
| | - Shelagh Joss
- West of Scotland Genetics ServiceQueen Elizabeth University HospitalLaboratory Medicine BuildingGlasgowG51 4TFUK
| | - Bronwyn Kerr
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterM13 9WLUK
| | - Alison Kraus
- Yorkshire Regional Genetics ServiceDepartment of Clinical GeneticsLeeds Teaching Hospitals NHS TrustChapel Allerton HospitalChapeltown RoadLeedsLS7 4SAUK
| | - Meriel McEntagart
- South West Thames Regional Genetics CentreSt George's Healthcare NHS TrustSt George's University of LondonCranmer TerraceLondonSW17 0REUK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersBirmingham Women's and Children's NHS Foundation TrustBirmingham Women's HospitalMindelsohn Way, EdgbastonBirminghamB15 2TGUK
| | - Audrey Smith
- Yorkshire Regional Genetics ServiceDepartment of Clinical GeneticsLeeds Teaching Hospitals NHS TrustChapel Allerton HospitalChapeltown RoadLeedsLS7 4SAUK
| | - Miranda Splitt
- Northern Genetics ServiceNewcastle upon Tyne Hospitals NHS Foundation TrustInstitute of Human GeneticsInternational Centre for LifeCentral ParkwayNewcastle upon TyneNE1 3BZUK
| | - Janet M Thornton
- European Bioinformatics Institute (EMBL-EBI)Wellcome Genome Campus, HinxtonCambridgeCB10 1SDUK
| | | | - Caroline F Wright
- Wellcome Trust Sanger InstituteWellcome Genome Campus, HinxtonCambridgeCB1 8RQUK.,University of Exeter Medical SchoolRoyal Devon & Exeter HospitalBarrack RoadExeterEX2 5DWUK
| |
Collapse
|
10
|
Yamamoto T, Shimojima K, Yano T, Ueda Y, Takayama R, Ikeda H, Imai K. Loss-of-function mutations of STXBP1 in patients with epileptic encephalopathy. Brain Dev 2016; 38:280-4. [PMID: 26384463 DOI: 10.1016/j.braindev.2015.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Abstract
Epileptic encephalopathy, which commences during early infancy, is a severe epileptic syndrome that manifests as age-dependent seizures and severe developmental delay. The syntaxin-binding protein 1 gene (STXBP1) is one of the genes responsible for epileptic encephalopathy. We conducted a cohort study to analyze STXBP1 in 42 patients with epileptic encephalopathy. We identified four novel mutations: two splicing mutations, a frameshift mutation, and a nonsense mutation. All of these mutations were predicted to cause loss-of-function. This result suggests loss-of-function is a common mechanism underlying STXBP1-related epileptic encephalopathy. The four patients showed epileptic features consistent with STXBP1-related epileptic encephalopathy, but showed variable radiological findings, including brain volume loss and myelination delay.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Tamami Yano
- Department of Pediatrics, Faculty of Medicine, Akita University, Akita, Japan
| | - Yuki Ueda
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Rumiko Takayama
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Hiroko Ikeda
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Katsumi Imai
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| |
Collapse
|
11
|
Stamberger H, Nikanorova M, Willemsen MH, Accorsi P, Angriman M, Baier H, Benkel-Herrenbrueck I, Benoit V, Budetta M, Caliebe A, Cantalupo G, Capovilla G, Casara G, Courage C, Deprez M, Destrée A, Dilena R, Erasmus CE, Fannemel M, Fjær R, Giordano L, Helbig KL, Heyne HO, Klepper J, Kluger GJ, Lederer D, Lodi M, Maier O, Merkenschlager A, Michelberger N, Minetti C, Muhle H, Phalin J, Ramsey K, Romeo A, Schallner J, Schanze I, Shinawi M, Sleegers K, Sterbova K, Syrbe S, Traverso M, Tzschach A, Uldall P, Van Coster R, Verhelst H, Viri M, Winter S, Wolff M, Zenker M, Zoccante L, De Jonghe P, Helbig I, Striano P, Lemke JR, Møller RS, Weckhuysen S. STXBP1encephalopathy. Neurology 2016; 86:954-62. [DOI: 10.1212/wnl.0000000000002457] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
|
12
|
Dilena R, Striano P, Traverso M, Viri M, Cristofori G, Tadini L, Barbieri S, Romeo A, Zara F. Dramatic effect of levetiracetam in early-onset epileptic encephalopathy due to STXBP1 mutation. Brain Dev 2016; 38:128-31. [PMID: 26212315 DOI: 10.1016/j.braindev.2015.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/04/2015] [Accepted: 07/12/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Syntaxin Binding Protein 1 (STXBP1) mutations determine a central neurotransmission dysfunction through impairment of the synaptic vesicle release, thus causing a spectrum of phenotypes varying from syndromic and non-syndromic epilepsy to intellectual disability of variable degree. Among the antiepileptic drugs, levetiracetam has a unique mechanism of action binding SV2A, a glycoprotein of the synaptic vesicle release machinery. PATIENT DESCRIPTION We report a 1-month-old boy manifesting an epileptic encephalopathy with clonic seizures refractory to phenobarbital, pyridoxine and phenytoin that presented a dramatic response to levetiracetam with full epilepsy control and EEG normalization. Genetic analysis identified a novel de novo heterozygous mutation (c.[922A>T]p.[Lys308(∗)]) in the STXBP1 gene that severely affects the protein. CONCLUSIONS The observation of a dramatic efficacy of levetiracetam in a case of STXBP1 epileptic encephalopathy refractory to other antiepileptic drugs and considerations regarding the specific mechanism of action of levetiracetam modulating the same system affected by STXBP1 mutations support the hypothesis that this drug may be able to reverse specifically the disease epileptogenic abnormalities. Further clinical observations and laboratory studies are needed to confirm this hypothesis and eventually lead to consider levetiracetam as the first choice treatment of patients with suspected or confirmed STXBP1-related epilepsies.
Collapse
Affiliation(s)
- Robertino Dilena
- Unit of Clinical Neurophysiology, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Institute "G. Gaslini", University of Genova, Genoa, Italy
| | - Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, Laboratory of Neurogenetics, Institute "G. Gaslini", Genoa, Italy
| | - Maurizio Viri
- Pediatric Neurology Unit and Epilepsy Center, Department of Neuroscience, "Fatebenefratelli e Oftalmico" Hospital, Milan, Italy
| | - Gloria Cristofori
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Tadini
- Unit of Clinical Neurophysiology, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Barbieri
- Unit of Clinical Neurophysiology, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonino Romeo
- Pediatric Neurology Unit and Epilepsy Center, Department of Neuroscience, "Fatebenefratelli e Oftalmico" Hospital, Milan, Italy
| | - Federico Zara
- Pediatric Neurology and Muscular Diseases Unit, Laboratory of Neurogenetics, Institute "G. Gaslini", Genoa, Italy
| |
Collapse
|
13
|
Di Meglio C, Lesca G, Villeneuve N, Lacoste C, Abidi A, Cacciagli P, Altuzarra C, Roubertie A, Afenjar A, Renaldo-Robin F, Isidor B, Gautier A, Husson M, Cances C, Metreau J, Laroche C, Chouchane M, Ville D, Marignier S, Rougeot C, Lebrun M, de Saint Martin A, Perez A, Riquet A, Badens C, Missirian C, Philip N, Chabrol B, Villard L, Milh M. Epileptic patients with de novo STXBP1 mutations: Key clinical features based on 24 cases. Epilepsia 2015; 56:1931-40. [PMID: 26514728 DOI: 10.1111/epi.13214] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Mutations in the syntaxin binding protein 1 gene (STXBP1) have been associated mostly with early onset epileptic encephalopathies (EOEEs) and Ohtahara syndrome, with a mutation detection rate of approximately 10%, depending on the criteria of selection of patients. The aim of this study was to retrospectively describe clinical and electroencephalography (EEG) features associated with STXBP1-related epilepsies to orient molecular screening. METHODS We screened STXBP1 in a cohort of 284 patients with epilepsy associated with a developmental delay/intellectual disability and brain magnetic resonance imaging (MRI) without any obvious structural abnormality. We reported on patients with a mutation and a microdeletion involving STXBP1 found using array comparative genomic hybridization (CGH). RESULTS We found a mutation of STXBP1 in 22 patients and included 2 additional patients with a deletion including STXBP1. In 22 of them, epilepsy onset was before 3 months of age. EEG at onset was abnormal in all patients, suppression-burst and multifocal abnormalities being the most common patterns. The rate of patients carrying a mutation ranged from 25% in Ohtahara syndrome to <5% in patients with an epilepsy beginning after 3 months of age. Epilepsy improved over time for most patients, with an evolution to West syndrome in half. Patients had moderate to severe developmental delay with normal head growth. Cerebellar syndrome with ataxic gait and/or tremor was present in 60%. SIGNIFICANCE Our data confirm that STXBP1 mutations are associated with neonatal-infantile epileptic encephalopathies. The initial key features highlighted in the cohort of early epileptic patients are motor seizures either focal or generalized, abnormal initial interictal EEG, and normal head growth. In addition, we constantly found an ongoing moderate to severe developmental delay with normal head growth. Patients often had ongoing ataxic gait with trembling gestures. Altogether these features should help the clinician to consider STXBP1 molecular screening.
Collapse
Affiliation(s)
- Chloé Di Meglio
- Pediatric Neurology Department, Timone Children Hospital, Marseille, France
| | - Gaetan Lesca
- INSERM, U1028, CNRS, UMR5292, Laboratory of Molecular Genetics, Lyon, France
| | | | - Caroline Lacoste
- Aix Marseille University, INSERM, UMR_S 910, Marseille, France.,Medical Genetics Department, Timone Children Hospital, Marseille, France.,Aix Marseille University, GMGF, Marseille, France
| | - Affef Abidi
- Aix Marseille University, INSERM, UMR_S 910, Marseille, France.,Aix Marseille University, GMGF, Marseille, France
| | - Pierre Cacciagli
- Aix Marseille University, INSERM, UMR_S 910, Marseille, France.,Medical Genetics Department, Timone Children Hospital, Marseille, France.,Aix Marseille University, GMGF, Marseille, France
| | | | - Agathe Roubertie
- Pediatric Neurology Department, Montpellier University Hospital, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), INSERM U 1051, Montpellier, France
| | - Alexandra Afenjar
- Pediatric Neurology Department, Trousseau Hospital, AP-HP, Paris, France
| | | | - Bertrand Isidor
- Medical Genetics Department, Nantes University Hospital, Nantes, France
| | - Agnes Gautier
- Department of Pediatrics, Nantes University Hospital, Nantes, France
| | - Marie Husson
- Pediatric Neurology Department, Bordeaux University Hospital, Bordeaux, France
| | - Claude Cances
- Pediatric Neurology Department, Toulouse University Hospital, Toulouse, France
| | - Julia Metreau
- Pediatric Neurology Department, Bicêtre Hospital, Kremlin-Bicêtre, France
| | - Cécile Laroche
- Department of Pediatrics, Limoges University Hospital, Limoges, France
| | | | - Dorothée Ville
- Pediatric Neurology Department, Lyon University Hospital, Bron, France
| | | | | | - Marine Lebrun
- Medical Genetics Department, St Etienne University Hospital, Saint Priez en Jarez, France
| | - Anne de Saint Martin
- Pediatric Neurology Department, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France
| | - Alexandra Perez
- Pediatric Intensive Cares Unit, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France
| | - Audrey Riquet
- Pediatric Neurology Department, Lille University Hospital, Lille, France
| | - Catherine Badens
- Aix Marseille University, INSERM, UMR_S 910, Marseille, France.,Medical Genetics Department, Timone Children Hospital, Marseille, France.,Aix Marseille University, GMGF, Marseille, France
| | - Chantal Missirian
- Medical Genetics Department, Timone Children Hospital, Marseille, France
| | - Nicole Philip
- Aix Marseille University, INSERM, UMR_S 910, Marseille, France.,Medical Genetics Department, Timone Children Hospital, Marseille, France.,Aix Marseille University, GMGF, Marseille, France
| | - Brigitte Chabrol
- Pediatric Neurology Department, Timone Children Hospital, Marseille, France
| | - Laurent Villard
- Aix Marseille University, INSERM, UMR_S 910, Marseille, France.,Aix Marseille University, GMGF, Marseille, France
| | - Mathieu Milh
- Pediatric Neurology Department, Timone Children Hospital, Marseille, France.,Aix Marseille University, INSERM, UMR_S 910, Marseille, France.,Aix Marseille University, GMGF, Marseille, France
| |
Collapse
|
14
|
Abstract
Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. As a subgroup of the genetically mediated epilepsies, epileptic encephalopathies are complex and heterogeneous disorders, making diagnosis and treatment decisions difficult. Recent exome sequencing data suggest that mutations causing epileptic encephalopathies are often sporadic, typically resulting from de novo dominant mutations in a single autosomal gene, although inherited autosomal recessive and X-linked forms also exist. In this review we provide a summary of the key features of several early- and mid-childhood onset epileptic encephalopathies including Ohtahara syndrome, Dravet syndrome, Infantile spasms and Lennox Gastaut syndrome. We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies.
Collapse
Affiliation(s)
- Sahar Esmaeeli Nieh
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA USA
| | - Elliott H. Sherr
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA USA
| |
Collapse
|
15
|
Hussain S. Developing a PPI inhibitor-based therapy for STXBP1 haploinsufficiency-associated epileptic disorders. Front Mol Neurosci 2014; 7:6. [PMID: 24550774 PMCID: PMC3912442 DOI: 10.3389/fnmol.2014.00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/18/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shobbir Hussain
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge Cambridge, UK ; Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|