1
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Molla GK, Kağnıcı M, Günlemez A, Yeni Y, Ünal Uzun Ö. Two cases of MEGDHEL syndrome diagnosed with hyperammonemia. J Pediatr Endocrinol Metab 2023; 36:203-206. [PMID: 36517456 DOI: 10.1515/jpem-2022-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES MEGDHEL [3-methylglutaconic aciduria (MEG), deafness (D), hepatopathy (H), encephalopathy (E), and Leigh-like disease (L)] syndrome is an autosomal recessive disorder caused by mutations in the serine active site-containing protein 1 (SERAC1) gene. MEGDHEL syndrome is clinically characterized by sensorineural hearing loss, encephalopathy, hepatopathy, 3-methylglutaconic aciduria, and Leigh-like lesions on cranial magnetic resonance imaging. During the neonatal period, it has been reported to present with hypoglycemia, hyperammonemia, impaired liver functions, cholestasis, metabolic acidosis, and sepsis-like clinical findings. However, clinical findings in the neonatal period were reported as a result of the retrospective evaluation of patients diagnosed at an older age. Herein we reported two cases diagnosed as MEGDHEL syndrome during neonatal period in two different clinics with sepsis-like findings, impaired liver functions, and ammonia levels high enough to require dialysis. CASE PRESENTATION One of the cases was born 37 weeks of gestation with a birth weight of 2,060 g and initially presented with respiratory distress and feeding difficulties. The other case admitted to the neonatal intensive care unit had fed problems together with respiratory distress and circulatory failure within the first 24 h after initiation of parenteral nutrition. CONCLUSIONS MEGDHEL syndrome should be suspected in patients with sepsis-like clinical features and hyperammonemia.
Collapse
Affiliation(s)
- Gülhan Karakaya Molla
- Division of Pediatric Metabolism, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Türkiye
| | - Mehtap Kağnıcı
- Antalya Training and Research Hospital, Pediatric Metabolism Clinic, Antalya, Türkiye
| | - Ayla Günlemez
- Division of Neonatalogy, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Türkiye
| | - Yaşar Yeni
- Antalya Training and Research Hospital, Neonatal İntensive Care, Antalya, Türkiye
| | - Özlem Ünal Uzun
- Division of Pediatric Metabolism, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Türkiye
| |
Collapse
|
3
|
Liu W, Johansson Å, Rask-Andersen H, Rask-Andersen M. A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Med 2021; 19:302. [PMID: 34847940 PMCID: PMC8638543 DOI: 10.1186/s12916-021-02169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated. METHODS We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4. RESULTS All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss. CONCLUSIONS Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Fellman V, Banerjee R, Lin KL, Pulli I, Cooper H, Tyynismaa H, Kallijärvi J. Severe neonatal MEGDHEL syndrome with a homozygous truncating mutation in SERAC1. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166298. [PMID: 34751152 DOI: 10.1016/j.bbadis.2021.166298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023]
Abstract
In the diagnostic work-up of a newborn infant with a metabolic crisis, lethal multiorgan failure on day six of life, and increased excretion of 3-methylglutaconic acid, we found using whole genome sequencing a homozygous SERAC1 mutation indicating MEGDHEL syndrome (3-methylglutaconic aciduria with deafness-dystonia, hepatopathy, encephalopathy, and Leigh-like syndrome). The SERAC1 protein is located at the contact site between mitochondria and the endoplasmic reticulum (ER) and is crucial for cholesterol trafficking. Our aim was to investigate the effect of the homozygous truncating mutation on mitochondrial structure and function. In the patient fibroblasts, no SERAC1 protein was detected, the mitochondrial network was severely fragmented, and the cristae morphology was altered. Filipin staining showed uneven localization of unesterified cholesterol. The calcium buffer function between cytoplasm and mitochondria was deficient. In liver mitochondria, complexes I, III, and IV were clearly decreased. In transfected COS-1 cells the mutant protein with the a 45-amino acid C-terminal truncation was distributed throughout the cell, whereas wild-type SERAC1 partially colocalized with the mitochondrial marker MT-CO1. The structural and functional mitochondrial abnormalities, caused by the loss of SERAC1, suggest that the crucial disease mechanism is disrupted interplay between the ER and mitochondria leading to decreased influx of calcium to mitochondria and secondary respiratory chain deficiency.
Collapse
Affiliation(s)
- Vineta Fellman
- Folkhälsan Research Center, Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; Department of Clinical Sciences, Lund, Pediatrics, Lund University, Sweden; Children's Hospital, University of Helsinki, Finland.
| | - Rishi Banerjee
- Folkhälsan Research Center, Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Kai-Lan Lin
- Åbo Akademi University, Faculty of Natural Sciences and Technology, Turku, Finland
| | - Ilari Pulli
- Åbo Akademi University, Faculty of Natural Sciences and Technology, Turku, Finland
| | - Helen Cooper
- Åbo Akademi University, Faculty of Natural Sciences and Technology, Turku, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
5
|
Alshammari SA, Alghamdi FA, Alhazmi R, Aldossary S. Incidental Finding of MEGDEL Syndrome Based on Neuroimaging: Case Report. Case Rep Neurol 2021; 13:429-433. [PMID: 34326751 PMCID: PMC8299399 DOI: 10.1159/000516319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
MEGDEL 3-methylglutaconic (MG) aciduria, deafness, encephalopathy, Leigh-like syndrome is an autosomal recessive disorder associated with infantile hypoglycemia, progressive psychomotor developmental delay, cerebellar atrophy with lesions in the basal ganglia, spasticity, dystonia, deafness, and transient liver problems, which typically occur in the first year of life. Other clinical presentations include failure to thrive, epilepsy, and optic nerve atrophy. The serine active site-containing 1 (SERAC1) mutation is localized at the mitochondria-associated membranes, which are responsible for encoding a phosphatidylglycerol remodeler essential for both mitochondrial function and intracellular cholesterol trafficking and is thus responsible for the disease. Diagnosis is confirmed by the elevation of and concentrations of 3-MG acid and 3-methylglutaric acid in the urine or by identification of bi-allelic SERAC1 pathogenic variants on molecular genetic testing. Different pathological variants of SERAC1 have been identified in MEGDEL syndrome to date. Here, we report a case of a child with MEGDEL syndrome due to SERAC1 mutation. The child presented with accidental finding by CT showing hypodensity on bilateral symmetric anterior putamen and caudate abnormal. Neurological examination was unremarkable. This report presents a new neuroimaging finding by CT of MEGDEL syndrome.
Collapse
Affiliation(s)
| | | | - Rami Alhazmi
- King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | |
Collapse
|
6
|
Yan D, Chen S, Cai F, Shu J, Zhi X, Zheng J, Zhang C, Li D, Cai C. Complicated Hereditary Spastic Paraplegia Caused by SERAC1 Variants in a Chinese Family. Front Pediatr 2021; 9:816265. [PMID: 35223715 PMCID: PMC8873186 DOI: 10.3389/fped.2021.816265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The serine active site-containing protein 1 (SERAC1) biallelic variant usually causes MEGDEL syndrome, clinically characterized by increased excretion of 3-methylglutaconic in the urine, muscle hypotonia, sensorineural deafness, and Leigh-like lesions on brain MRI scans. In this study, we present a case from a Chinese family with disordered metabolism and dystonia owing to SERAC1 variants; the clinical phenotypes of the proband were different from those of MEGDEL syndrome but were similar to those juvenile-onset complicated hereditary spastic paraplegia. Thus, in this study, we aimed to confirm the relationship between SERAC1 variants and complicated hereditary spastic paraplegia. METHODS MRI and laboratory tests, including gas chromatography/mass spectrometry (GC/MS), were carried out for the proband. Whole-exome sequencing was used to detect the candidate SERAC1 variants. Variants were verified using Sanger sequencing. Various software programs (PolyPhen-2, MutationTaster, PROVEAN, and SIFT) were used to predict the pathogenicity of novel variants. RESULTS Brain MRI scans showed a symmetric flake abnormal signal shadow in the bilateral basal ganglia in T2-weighted image (T2WI) and fluid-attenuated inversion recovery (FLAIR) analyses. The excretion of 3-methylglutaconic acid was found to be increased in our GC/MS analysis. Whole-exome sequencing showed novel compound heterozygous variants, including a novel c.1495A>G (p.Met499Val) variant in exon 14 of SERAC1 inherited from the father and a novel c.721_722delAG (p.Leu242fs) variant in exon 8 inherited from the mother. The pathogenicity prediction results showed that these two variants were deleterious. CONCLUSIONS This study presented a patient with complicated hereditary spastic paraplegia caused by SERAC1 variants. These findings expand the number of known SERAC1 variants and the phenotypic spectrum associated with SERAC1 deficiency. This study may contribute to counseling and prevention of hereditary diseases through prenatal.
Collapse
Affiliation(s)
- Dandan Yan
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Shaopei Chen
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Fengying Cai
- Department of Physiology, Tianjin Medical College, Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Xiufang Zhi
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Jie Zheng
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunhua Zhang
- Matsumoto Institute of Life Science (MILS) International, Yokohama, Japan
| | - Dong Li
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
7
|
Finsterer J, Scorza FA, Fiorini AC, Scorza CA. MEGDEL Syndrome. Pediatr Neurol 2020; 110:25-29. [PMID: 32684373 DOI: 10.1016/j.pediatrneurol.2020.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
MEGDEL syndrome is an autosomal recessive disorder, clinically characterized by 3-methylglutaconic aciduria, psychomotor delay, muscle hypotonia, sensorineural deafness, and Leigh-like lesions on brain magnetic resonance imaging. MEGDEL syndrome is due to mutations in the serine active site-containing protein 1 (SERAC1) gene. The SERAC1 protein is localized at the interface between the mitochondria and the endoplasmic reticulum in the mitochondrion-associated membrane fraction, which is essential for phospholipid exchange. SERAC1 was identified as a key player in phosphatidylglycerol remodeling, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Since the first description of MEGDEL syndrome in 2006, at least 102 patients have been reported. The phenotypic spectrum of MEGDEL syndrome is much broader than so far anticipated. In addition to the brain, ears, and gastrointestinal tract, the eyes, endocrine organs, heart, peripheral nerves, and the skeletal muscle may be affected. Diagnosing MEGDEL syndrome requires a multidisciplinary approach, including genetic confirmation of a SERAC1 mutation. Treatment is supportive, and the outcome is usually poor with early death, except for the juvenile-onset type.
Collapse
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo/, (EPM/UNIFESP), São Paulo, Brazil
| | - Ana C Fiorini
- Programa de Estudos Pós-Graduado em Fonoaudiologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo/, (EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Maas RR, Iwanicka‐Pronicka K, Kalkan Ucar S, Alhaddad B, AlSayed M, Al‐Owain MA, Al‐Zaidan HI, Balasubramaniam S, Barić I, Bubshait DK, Burlina A, Christodoulou J, Chung WK, Colombo R, Darin N, Freisinger P, Garcia Silva MT, Grunewald S, Haack TB, van Hasselt PM, Hikmat O, Hörster F, Isohanni P, Ramzan K, Kovacs‐Nagy R, Krumina Z, Martin‐Hernandez E, Mayr JA, McClean P, De Meirleir L, Naess K, Ngu LH, Pajdowska M, Rahman S, Riordan G, Riley L, Roeben B, Rutsch F, Santer R, Schiff M, Seders M, Sequeira S, Sperl W, Staufner C, Synofzik M, Taylor RW, Trubicka J, Tsiakas K, Unal O, Wassmer E, Wedatilake Y, Wolff T, Prokisch H, Morava E, Pronicka E, Wevers RA, de Brouwer AP, Wortmann SB. Progressive deafness-dystonia due to SERAC1 mutations: A study of 67 cases. Ann Neurol 2017; 82:1004-1015. [PMID: 29205472 PMCID: PMC5847115 DOI: 10.1002/ana.25110] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/13/2017] [Accepted: 11/26/2017] [Indexed: 11/12/2022]
Abstract
OBJECTIVE 3-Methylglutaconic aciduria, dystonia-deafness, hepatopathy, encephalopathy, Leigh-like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. METHODS This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. RESULTS Sixty-seven individuals (39 previously unreported) from 59 families were included (age range = 5 days-33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic "putaminal eye" was seen in 53%. The urinary marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. INTERPRETATION MEGDHEL syndrome is a progressive deafness-dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004-1015.
Collapse
Affiliation(s)
- Roeltje R. Maas
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Sema Kalkan Ucar
- Division of Metabolic Disease, Ege University Medical Faculty, Department of PediatricsIzmirTurkey
| | - Bader Alhaddad
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
| | - Moeenaldeen AlSayed
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Mohammed A. Al‐Owain
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Hamad I. Al‐Zaidan
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Shanti Balasubramaniam
- Western Sydney Genetics Program, Children's Hospital at Westmead, SydneyNew South WalesAustralia
- Discipline of Genetic Medicine & Paediatrics and Child Health, University of SydneySydneyNew South WalesAustralia
| | - Ivo Barić
- Department of PediatricsUniversity Hospital CenterZagrebCroatia
- School of Medicine, University of ZagrebZagrebCroatia
| | - Dalal K. Bubshait
- Department of Pediatrics, College of MedicineImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of PediatricsUniversity Hospital of PaduaPaduaItaly
| | - John Christodoulou
- Neurodevelopmental Genomics Research Group, Murdoch Children's Research Institute, and Department of PaediatricsMelbourne Medical School, University of MelbourneMelbourneVictoriaAustralia
- Genetic Metabolic Disorders Research Unit and Western Sydney Genetics Program, Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Child and Adolescent Health and Genetic Medicine, Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Wendy K. Chung
- Departments of Pediatrics and MedicineColumbia UniversityNew YorkNY
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Faculty of Medicine, Catholic University of the Sacred HeartRomeItaly
- Center for the Study of Rare Hereditary Diseases, Niguarda Ca' Granda Metropolitan HospitalMilanItaly
| | - Niklas Darin
- Department of PediatricsInstitute of Clinical Sciences, University of Gothenburg, Queen Silvia's Children's HospitalGothenburgSweden
| | | | - Maria Teresa Garcia Silva
- Inborn Errors of Metabolism and Mitochondrial Disease Unit“12 de Octubre” University Hospital, Avenida de Cordoba sn, 28041 Madrid, Spain. Rare Diseases Biomedical Research Centre (CIBERER)MadridSpain
- Complutense UniversityMadridSpain
| | - Stephanie Grunewald
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children National Health Service Foundation Trust, University College London Institute of Child HealthLondonUnited Kingdom
| | - Tobias B. Haack
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
- Institute of Medical Genetics and Applied GenomicsTübingenGermany
| | - Peter M. van Hasselt
- Wilhelmina Children's Hospital Utrecht, University Medical Center UtrechtUtrechtthe Netherlands
| | - Omar Hikmat
- Department of PediatricsHaukeland University HospitalBergenNorway
- Department of Clinical Medicine (K1)University of BergenBergenNorway
| | - Friederike Hörster
- Department of General Pediatrics, Division of Neuropediatrics and Pediatric Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Pirjo Isohanni
- Children's Hospital, University of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of HelsinkiHelsinkiFinland
| | - Khushnooda Ramzan
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Reka Kovacs‐Nagy
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
| | - Zita Krumina
- Department of Biology and MicrobiologyRiga Stradin's UniversityRigaLatvia
| | - Elena Martin‐Hernandez
- Inborn Errors of Metabolism and Mitochondrial Disease Unit“12 de Octubre” University Hospital, Avenida de Cordoba sn, 28041 Madrid, Spain. Rare Diseases Biomedical Research Centre (CIBERER)MadridSpain
- Complutense UniversityMadridSpain
| | - Johannes A. Mayr
- Department of PediatricsSalzburg State Hospitals and Paracelsus Medical UniversitySalzburgAustria
| | - Patricia McClean
- Leeds Teaching Hospitals National Health Service TrustLeedsUnited Kingdom
| | | | - Karin Naess
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Lock H. Ngu
- Division of Clinical Genetics, Department of GeneticsKuala Lumpur HospitalKuala LumpurMalaysia
| | - Magdalena Pajdowska
- Department of Clinical Biochemistry, Radioimmunology, and Experimental MedicineChildren's Memorial Health InstituteWarsawPoland
| | - Shamima Rahman
- University College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Gillian Riordan
- Department of Pediatric NeurologyRed Cross War Memorial Children's HospitalCape TownSouth Africa
| | - Lisa Riley
- Genetic Metabolic Disorders Research Unit and Western Sydney Genetics Program, Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Child and Adolescent Health and Genetic Medicine, Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Benjamin Roeben
- Department of NeurodegenerationHertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Frank Rutsch
- Department of General PediatricsMünster University Children's HospitalMünsterGermany
| | - Rene Santer
- Department of PediatricsUniversity Medical Center EppendorfHamburgGermany
| | - Manuel Schiff
- Reference Center for Inherited Metabolic Diseases, AP‐HP, Robert Debré Hospital, University Paris Diderot‐Sorbonne Paris Cité, Paris, France AND INSERM U1141ParisFrance
| | - Martine Seders
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Wolfgang Sperl
- Department of PediatricsSalzburg State Hospitals and Paracelsus Medical UniversitySalzburgAustria
| | - Christian Staufner
- Department of General Pediatrics, Division of Neuropediatrics and Pediatric Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Matthis Synofzik
- Department of NeurodegenerationHertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial ResearchInstitute of Neuroscience, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Joanna Trubicka
- Department of Medical GeneticsChildren's Memorial Health InstituteWarsawPoland
| | | | - Ozlem Unal
- Division of Metabolic DiseasesHacettepe University Children's HospitalAnkaraTurkey
| | | | - Yehani Wedatilake
- University College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Toni Wolff
- Nottingham University Hospitals National Health Service Trust, Nottingham Children's HospitalNottinghamUnited Kingdom
| | - Holger Prokisch
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
- Institute of Human Genetics, Helmholtz Center MunichNeuherbergGermany
| | - Eva Morava
- Hayward Genetics Center and Department of PediatricsTulane University Medical SchoolNew OrleansLA
| | - Ewa Pronicka
- Department of Pediatrics, Nutrition and Metabolic DiseasesChildren's Memorial Health InstituteWarsawPoland
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | - Arjan P. de Brouwer
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical CenterNijmegenthe Netherlands
| | - Saskia B. Wortmann
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
- Department of PediatricsSalzburg State Hospitals and Paracelsus Medical UniversitySalzburgAustria
- Institute of Human Genetics, Helmholtz Center MunichNeuherbergGermany
| |
Collapse
|
9
|
First missense mutation outside of SERAC1 lipase domain affecting intracellular cholesterol trafficking. Neurogenetics 2015; 17:51-6. [PMID: 26445863 DOI: 10.1007/s10048-015-0463-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
We report the clinical and genetic findings in a Spanish boy who presented MEGDEL syndrome, a very rare inborn error of metabolism. Whole-exome sequencing uncovered a new homozygous mutation in the serine active site containing 1 (SERAC1) gene, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Functional studies in patient fibroblasts showed that p.D224G mutation affects the intracellular cholesterol trafficking. Only three missense mutations in this gene have been described before, being p.D224G the first missense mutation outside of the SERAC1 serine-lipase domain. Therefore, we conclude that the defect in cholesterol trafficking is not limited to alterations in this specific part of the protein.
Collapse
|
10
|
Lu YW, Claypool SM. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet 2015; 6:3. [PMID: 25691889 PMCID: PMC4315098 DOI: 10.3389/fgene.2015.00003] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 01/14/2023] Open
Abstract
The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|