1
|
Bowen AB, Rapalino O, Jaimes C, Ratai EM, Zhong Y, Thiele EA, Kritzer A, Ganetzky RD, Gold NB, Walker MA. Prenatal molecular diagnosis of pyruvate dehydrogenase complex deficiency enables rapid initiation of ketogenic diet. Am J Med Genet A 2024; 194:e63825. [PMID: 39058293 DOI: 10.1002/ajmg.a.63825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Pyruvate dehydrogenase complex deficiency (PDCD) is a mitochondrial disorder of carbohydrate oxidation characterized by lactic acidosis and central nervous system involvement. Knowledge of the affected metabolic pathways and clinical observations suggest that early initiation of the ketogenic diet may ameliorate the metabolic and neurologic course of the disease. We present a case in which first trimester ultrasound identified structural brain abnormalities prompting a prenatal molecular diagnosis of PDCD. Ketogenic diet, thiamine, and N-acetylcysteine were initiated in the perinatal period with good response, including sustained developmental progress. This case highlights the importance of a robust neurometabolic differential diagnosis for prenatally diagnosed structural anomalies and the use of prenatal molecular testing to facilitate rapid, genetically tailored intervention.
Collapse
Affiliation(s)
- Aaron B Bowen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Otto Rapalino
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eva-Maria Ratai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yingyi Zhong
- Department of Neurology, Child Neurology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A Thiele
- Department of Neurology, Child Neurology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca D Ganetzky
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nina B Gold
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa A Walker
- Department of Neurology, Child Neurology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wesół-Kucharska D, Greczan M, Kaczor M, Ehmke vel Emczyńska-Seliga E, Hajdacka M, Czekuć-Kryśkiewicz E, Piekutowska-Abramczuk D, Halat-Wolska P, Ciara E, Jaworski M, Jezela-Stanek A, Rokicki D. Efficacy and Safety of Ketogenic Diet Treatment in Pediatric Patients with Mitochondrial Disease. Nutrients 2024; 16:812. [PMID: 38542723 PMCID: PMC10975652 DOI: 10.3390/nu16060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 01/05/2025] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from abnormal mitochondrial function. Currently, there is no causal treatment for MDs. The aim of the study was to assess the effectiveness and safety of the ketogenic diet (KD) in patients with MD and to analyse selected biochemical and clinical parameters evaluating the effectiveness of KD treatment in patients with MDs. A total of 42 paediatric patients were assigned to four groups: group 1-patients with MD in whom KD treatment was started (n = 11); group 2-patients with MD remaining on an ordinary diet (n = 10); group 3-patients without MD in whom KD treatment was initiated (n = 10), group 4-patients without MD on a regular diet (n = 11). Clinical improvement was observed in 9/11 patients with MD treated with KD. Among patients with MD without KD, the clinical condition deteriorated in 7/10 patients, improved in 2/10 patients, and remained unchanged in one patient. Adverse events of KD occurred with a comparable frequency in groups 1 and 3. There was no significant difference in changes in biomarker concentrations over the course of the study among patients treated and untreated with KD.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Ewa Ehmke vel Emczyńska-Seliga
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Małgorzata Hajdacka
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| | - Edyta Czekuć-Kryśkiewicz
- Laboratory of Radioimmunology and Experimental Medicine, Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Dorota Piekutowska-Abramczuk
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (D.P.-A.); (P.H.-W.); (E.C.)
| | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (D.P.-A.); (P.H.-W.); (E.C.)
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (D.P.-A.); (P.H.-W.); (E.C.)
| | - Maciej Jaworski
- Laboratory of Densitometry, Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka Str, 01-138 Warsaw, Poland;
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.G.); (M.K.); (E.E.v.E.-S.); (M.H.); (D.R.)
| |
Collapse
|
3
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
4
|
Savvidou A, Ivarsson L, Naess K, Eklund EA, Lundgren J, Dahlin M, Frithiof D, Sofou K, Darin N. Novel imaging findings in pyruvate dehydrogenase complex (PDHc) deficiency-Results from a nationwide population-based study. J Inherit Metab Dis 2022; 45:248-263. [PMID: 34873726 DOI: 10.1002/jimd.12463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023]
Abstract
The vast clinical and radiological spectrum of pyruvate dehydrogenase complex (PDHc) deficiency continues to pose challenges both in diagnostics and disease monitoring. Prompt diagnosis is important to enable early initiation of ketogenic diet. The patients were recruited from an ongoing population-based study in Sweden. All patients with a genetically confirmed diagnosis who had been investigated with an MRI of the brain were included. Repeated investigations were assessed to study the evolution of the MRI changes. Sixty-two MRI investigations had been performed in 34 patients (23 females). The genetic cause was mutations in PDHA1 in 29, PDHX and DLAT in 2 each, and PDHB in 1. The lesions were prenatal developmental in 16, prenatal clastic in 18, and postnatal clastic in 15 individuals. Leigh-like lesions with predominant involvement of globus pallidus were present in 12, while leukoencephalopathy was present in 6 and stroke-like lesions in 3 individuals. A combination of prenatal developmental and clastic lesions was present in 15 individuals. In addition, one male with PDHA1 also had postnatal clastic lesions. The most common lesions found in our study were agenesis or hypoplasia of corpus callosum, ventriculomegaly, or Leigh-like lesions. Furthermore, we describe a broad spectrum of other MRI changes that include leukoencephalopathy and stroke-like lesions. We argue that a novel important clue, suggesting the possibility of PDHc deficiency on MRI scans, is the simultaneous presence of multiple lesions on MRI that have occurred during different phases of brain development.
Collapse
Affiliation(s)
- Antri Savvidou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Liz Ivarsson
- Department of Radiology, Institute of Clinical Sciences, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Karin Naess
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Lundgren
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Dahlin
- Neuropediatric Unit, Department of Women's and Children's Health, Karolinska Institute and Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | | | - Kalliopi Sofou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Jakkamsetti V, Balasubramaniam S, Grover N, Pascual JM. Mitochondrial disease manifestations in relation to transcriptome location and function. Mol Genet Metab 2022; 135:82-92. [PMID: 34972656 PMCID: PMC8858018 DOI: 10.1016/j.ymgme.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023]
Abstract
Localization within the nervous system provides context for neurological disease manifestations and treatment, with numerous disease mechanisms exhibiting predilect locations. In contrast, the molecular function of most disease-causing genes is generally considered dissociated from such brain regional correlations because most genes are expressed throughout the brain. We tested the factual basis for this dissociation by discerning between two distinct genetic disease mechanism possibilities: One, gene-specific, in which genetic disorders are poorly localizable because they are multiform at the molecular level, with each mutant gene acting more widely or complexly than via mere loss or gain of one function. The other, more general, where aspects shared by groups of genes such as membership in a gene set that sustains a concerted biological process accounts for a common or localizable phenotype. We analyzed mitochondrial substrate disorders as a paradigm of apparently heterogeneous diseases when considered from the point of view of their manifestations and individual function of their causal genes. We used publicly available transcriptomes, disease phenotypes published in peer-reviewed journals and Human Ontology classifications for 27 mitochondrial substrate metabolism diseases and analyzed if these disorders manifest common phenotypes and if this relates to common brain regions or cells as demarcated by their transcriptome. The most frequent phenotypic manifestations and brain structures involved were almost stereotypic regardless of the individual gene affected, correlating with the regional abundance of the transcriptome that served mitochondrial substrate metabolism. This also applied to the transcriptome of inhibitory neurons, which are dysfunctional in some mitochondrial diseases. This stands in contrast with resistance to dementia atrophy from other causes, which is known to also associate with greater expression of a similar fraction of the transcriptome. The results suggest that brain region or cell type dysfunction stemming from a broad process such as mitochondrial substrate metabolism is more relevant for disease manifestations than individual gene participation in specific molecular function.
Collapse
Affiliation(s)
- Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Seema Balasubramaniam
- Independent scholar, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nidhi Grover
- Independent scholar, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Eugene McDermott Center for Human Growth & Development / Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Walker MA, Miranda M, Allred A, Mootha VK. On the dynamic and even reversible nature of Leigh syndrome: Lessons from human imaging and mouse models. Curr Opin Neurobiol 2021; 72:80-90. [PMID: 34656053 PMCID: PMC8901530 DOI: 10.1016/j.conb.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Leigh syndrome (LS) is a neurodegenerative disease characterized by bilaterally symmetric brainstem or basal ganglia lesions. More than 80 genes, largely impacting mitochondrial energy metabolism, can underlie LS, and no approved medicines exist. Described 70 years ago, LS was initially diagnosed by the characteristic, necrotic lesions on autopsy. It has been broadly assumed that antemortem neuroimaging abnormalities in these regions correspond to end-stage histopathology. However, clinical observations and animal studies suggest that neuroimaging findings may represent an intermediate state, that is more dynamic than previously appreciated, and even reversible. We review this literature, discuss related conditions that are treatable, and present two new LS cases with radiographic improvement. We review studies in which hypoxia reverses advanced LS in a mouse model. The fluctuating and potentially reversible nature of radiographic LS lesions will be important in clinical trial design. Better understanding of this plasticity could lead to new therapies.
Collapse
Affiliation(s)
- Melissa A Walker
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States; Broad Institute of Harvard, MIT, United States; Department of Neurology, Massachusetts General Hospital, United States.
| | - Maria Miranda
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States; Broad Institute of Harvard, MIT, United States
| | - Amanda Allred
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States; Broad Institute of Harvard, MIT, United States.
| |
Collapse
|
7
|
Gong K, Xie L, Wu ZS, Xie X, Zhang XX, Chen JL. Clinical exome sequencing reveals a mutation in PDHA1 in Leigh syndrome: A case of a Chinese boy with lethal neuropathy. Mol Genet Genomic Med 2021; 9:e1651. [PMID: 33661577 PMCID: PMC8123737 DOI: 10.1002/mgg3.1651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Leigh syndrome, the most common mitochondrial syndrome in pediatrics, has diverse clinical manifestations and is genetically heterogeneous. Pathogenic mutations in more than 75 genes of two genomes (mitochondrial and nuclear) have been identified. PDHA1 encoding the E1 alpha subunit is an X‐chromosome gene whose mutations cause pyruvate dehydrogenase complex deficiency. Methods Here, we have described a 12‐year‐old boy with lethal neuropathy who almost died of a sudden loss of breathing and successive cardiac arrest. Extracorporeal membrane oxygenation rescued his life. His diagnosis was corrected from Guillain–Barré syndrome to Leigh syndrome 1 month later by clinical exome sequencing. Furthermore, we used software to predict the protein structure caused by frameshift mutations. We treated the boy with vitamin B1, coenzyme Q10, and a ketogenic diet. Results A PDHA1 mutation (NM_000284.4:c.1167_1170del) was identified as the underlying cause. The amino acid mutation was p.Ser390LysfsTer33. Moreover, the protein structure prediction results suggested that the protein structure has changed. The parents of the child were negative, so the mutation was de novo. The comprehensive assessment of the mutation was pathogenic. His condition gradually improved after receiving treatment. Conclusion This case suggests that gene detection should be popularized to improve diagnosis accuracy, especially in developing countries such as China.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Zhong-Shi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Xia Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Xing-Xing Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Jin-Lan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| |
Collapse
|
8
|
Gavrilovici C, Rho JM. Metabolic epilepsies amenable to ketogenic therapies: Indications, contraindications, and underlying mechanisms. J Inherit Metab Dis 2021; 44:42-53. [PMID: 32654164 DOI: 10.1002/jimd.12283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Metabolic epilepsies arise in the context of rare inborn errors of metabolism (IEM), notably glucose transporter type 1 deficiency syndrome, succinic semialdehyde dehydrogenase deficiency, pyruvate dehydrogenase complex deficiency, nonketotic hyperglycinemia, and mitochondrial cytopathies. A common feature of these disorders is impaired bioenergetics, which through incompletely defined mechanisms result in a wide spectrum of neurological symptoms, such as epileptic seizures, developmental delay, and movement disorders. The ketogenic diet (KD) has been successfully utilized to treat such conditions to varying degrees. While the mechanisms underlying the clinical efficacy of the KD in IEM remain unclear, it is likely that the proposed heterogeneous targets influenced by the KD work in concert to rectify or ameliorate the downstream negative consequences of genetic mutations affecting key metabolic enzymes and substrates-such as oxidative stress and cell death. These beneficial effects can be broadly grouped into restoration of impaired bioenergetics and synaptic dysfunction, improved redox homeostasis, anti-inflammatory, and epigenetic activity. Hence, it is conceivable that the KD might prove useful in other metabolic disorders that present with epileptic seizures. At the same time, however, there are notable contraindications to KD use, such as fatty acid oxidation disorders. Clearly, more research is needed to better characterize those metabolic epilepsies that would be amenable to ketogenic therapies, both experimentally and clinically. In the end, the expanded knowledge base will be critical to designing metabolism-based treatments that can afford greater clinical efficacy and tolerability compared to current KD approaches, and improved long-term outcomes for patients.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|