1
|
Ziaadini B, Ghaderi Yazdi B, Dirandeh E, Boostani R, Karimi N, Panahi A, Kariminejad A, Fadaee M, Ahangari F, Nafissi S. DOK7 congenital myasthenic syndrome: case series and review of literature. BMC Neurol 2024; 24:211. [PMID: 38907197 PMCID: PMC11191154 DOI: 10.1186/s12883-024-03713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) are among the most challenging differential diagnoses in the neuromuscular domain, consisting of diverse genotypes and phenotypes. A mutation in the Docking Protein 7 (Dok-7) is a common cause of CMS. DOK7 CMS requires different treatment than other CMS types. Regarding DOK7's special considerations and challenges ahead of neurologists, we describe seven DOK7 patients and evaluate their response to treatment. METHODS The authors visited these patients in the neuromuscular clinics of Tehran and Kerman Universities of Medical Sciences Hospitals. They diagnosed these patients based on clinical findings and neurophysiological studies, which Whole Exome Sequencing confirmed. For each patient, we tried unique medications and recorded the clinical response. RESULTS The symptoms started from birth to as late as the age of 33, with the mean age of onset being 12.5. Common symptoms were: Limb-girdle weakness in 6, fluctuating symptoms in 5, ptosis in 4, bifacial weakness in 3, reduced extraocular movement in 3, bulbar symptoms in 2 and dyspnea in 2 3-Hz RNS was decremental in 5 out of 6 patients. Salbutamol was the most effective. c.1124_1127dupTGCC is the most common variant; three patients had this variant. CONCLUSION We strongly recommend that neurologists consider CMS in patients with these symptoms and a similar familial history. We recommend prescribing salbutamol as the first-choice treatment option for DOK7 patients.
Collapse
Affiliation(s)
- Bentolhoda Ziaadini
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bardyia Ghaderi Yazdi
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Shariati Hospital, North Karegar St, Tehran, 14117-13135, Iran
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dirandeh
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Karimi
- Department of Neurology, School of Medicine, Immunogenetics Research Center, Toxoplasmosis Research Center, Clinical Research Development Unit of Bou Ali Sina Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akram Panahi
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Shariati Hospital, North Karegar St, Tehran, 14117-13135, Iran
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Fadaee
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Shahriar Nafissi
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Shariati Hospital, North Karegar St, Tehran, 14117-13135, Iran.
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
De Rose DU, Ronci S, Caoci S, Maddaloni C, Diodato D, Catteruccia M, Fattori F, Bosco L, Pro S, Savarese I, Bersani I, Randi F, Trozzi M, Meucci D, Calzolari F, Salvatori G, Solinas A, Dotta A, Campi F. Vocal Cord Paralysis and Feeding Difficulties as Early Diagnostic Clues of Congenital Myasthenic Syndrome with Neonatal Onset: A Case Report and Review of Literature. J Pers Med 2023; 13:jpm13050798. [PMID: 37240968 DOI: 10.3390/jpm13050798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Herein, we present a newborn female with congenital vocal cord paralysis who required a tracheostomy in the neonatal period. She also presented with feeding difficulties. She was later diagnosed with a clinical picture of congenital myasthenia, associated with three variants of the MUSK gene: the 27-month follow-up was described. In particular, the c.565C>T variant is novel and has never been described in the literature; it causes the insertion of a premature stop codon (p.Arg189Ter) likely leading to a consequent formation of a truncated nonfunctioning protein. We also systematically collected and summarized information on patients' characteristics of previous cases of congenital myasthenia with neonatal onset reported in the literature to date, and we compared them to our case. The literature reported 155 neonatal cases before our case, from 1980 to March 2022. Of 156 neonates with CMS, nine (5.8%) had vocal cord paralysis, whereas 111 (71.2%) had feeding difficulties. Ocular features were evident in 99 infants (63.5%), whereas facial-bulbar symptoms were found in 115 infants (73.7%). In one hundred sixteen infants (74.4%), limbs were involved. Respiratory problems were displayed by 97 infants (62.2%). The combination of congenital stridor, particularly in the presence of an apparently idiopathic bilateral vocal cord paralysis, and poor coordination between sucking and swallowing may indicate an underlying congenital myasthenic syndrome (CMS). Therefore, we suggest testing infants with vocal cord paralysis and feeding difficulties for MUSK and related genes to avoid a late diagnosis of CMS and improve outcomes.
Collapse
Affiliation(s)
| | - Sara Ronci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Caoci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Chiara Maddaloni
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daria Diodato
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Michela Catteruccia
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Fabiana Fattori
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Luca Bosco
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Stefano Pro
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Franco Randi
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marilena Trozzi
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Duino Meucci
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Flaminia Calzolari
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guglielmo Salvatori
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Agostina Solinas
- Neonatal Intensive Care Unit, Sant'Anna Hospital of Ferrara, 44124 Ferrara, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
3
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
4
|
Chan C, Emery L, Maltese C, Kumar A, Aliu E, Naik S, Paul D. A Novel Homozygous Variant in the CHRNE Gene in 2 Siblings with Congenital Myasthenic Syndrome. Child Neurol Open 2023; 10:2329048X231216432. [PMID: 38034490 PMCID: PMC10685742 DOI: 10.1177/2329048x231216432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Cholinergic receptor nicotinic epsilon (CHRNE) subunit mutations cause postsynaptic type of congenital myasthenic syndrome either as a primary acetylcholine-receptor deficiency or abnormal channel kinetics in the receptor. We report a novel homozygous variant (c.322C > T, p.Pro108Ser) in the epsilon subunit causing primary acetylcholine-receptor deficiency in two siblings. Two siblings presented with fatigable weakness. Both siblings had whole exome sequencing showing a homozygous variant (c.322C > T, p.Pro108Ser) of unknown significance in the epsilon subunit. Electromyography/nerve conduction study with repetitive nerve stimulation on one sibling showed a defect in neuromuscular junction transmission. Pseudoephedrine and fluoxetine for suspected slow-channel congenital myasthenic syndrome yielded no improvement. A trial of pyridostigmine led to clinical improvement. Given the clinical presentation, consanguinity, homozygous genetic variant, and response to pyridostigmine, we rationalize the homozygous variant (c.322C > T, p.Pro108Ser) in cholinergic receptor nicotinic epsilon subunit causes the primary acetylcholine-receptor deficiency congenital myasthenic syndrome.
Collapse
Affiliation(s)
- Cassie Chan
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lucy Emery
- Penn State Health College of Medicine, Hershey, PA, USA
| | | | - Ashutosh Kumar
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Ermal Aliu
- Department of Genetics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sunil Naik
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dustin Paul
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
5
|
Shao S, Shi G, Bi FF, Huang K. Pharmacological Treatments for Congenital Myasthenic Syndromes Caused by COLQ Mutations. Curr Neuropharmacol 2023; 21:1594-1605. [PMID: 36703579 PMCID: PMC10472815 DOI: 10.2174/1570159x21666230126145652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) refer to a series of inherited disorders caused by defects in various proteins. Mutation in the collagen-like tail subunit of asymmetric acetylcholinesterase (COLQ) is the second-most common cause of CMS. However, data on pharmacological treatments are limited. OBJECTIVE In this study, we reviewed related reports to determine the most appropriate pharmacological strategy for CMS caused by COLQ mutations. A literature review and meta-analysis were also performed. PubMed, MEDLINE, Web of Science, and Cochrane Library databases were searched to identify studies published in English before July 22, 2022. RESULTS A total of 42 studies including 164 patients with CMS due to 72 different COLQ mutations were selected for evaluation. Most studies were case reports, and none were randomized clinical trials. Our meta-analysis revealed evidence that β-adrenergic agonists, including salbutamol and ephedrine, can be used as first-line pharmacological treatments for CMS patients with COLQ mutations, as 98.7% of patients (74/75) treated with β-adrenergic agonists showed positive effects. In addition, AChEIs should be avoided in CMS patients with COLQ mutations, as 90.5% (105/116) of patients treated with AChEIs showed either no or negative effects. CONCLUSION (1) β-adrenergic agonist therapy is the first pharmacological strategy for treating CMS with COLQ mutations. (2) AChEIs should be avoided in patients with CMS with COLQ mutations.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Guanzhong Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Abstract
Myasthenia gravis is an autoimmune disorder caused by antibodies against elements in the postsynaptic membrane at the neuromuscular junction, which leads to muscle weakness. Congenital myasthenic syndromes are rare and caused by mutations affecting pre- or postsynaptic function at the neuromuscular synapse and resulting in muscle weakness. MG has a prevalence of 150-250 and an annual incidence of 8-10 individuals per million. The majority has disease onset after age 50 years. Juvenile MG with onset in early childhood is more common in East Asia. MG is subgrouped according to type of pathogenic autoantibodies, age of onset, thymus pathology, and generalization of muscle weakness. More than 80% have antibodies against the acetylcholine receptor. The remaining have antibodies against MuSK, LRP4, or postsynaptic membrane antigens not yet identified. A thymoma is present in 10% of MG patients, and more than one-third of thymoma patients develop MG as a paraneoplastic condition. Immunosuppressive drug therapy, thymectomy, and symptomatic drug therapy with acetylcholine esterase inhibitors represent cornerstones in the treatment. The prognosis is good, with the majority of patients having mild or moderate symptoms only. Most congenital myasthenic syndromes are due to dysfunction in the postsynaptic membrane. Symptom debut is in early life. Symptomatic drug treatment has sometimes a positive effect.
Collapse
Affiliation(s)
- Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital and Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Reynolds HM, Wen T, Farrell A, Mao R, Moore B, Boyden SE, Bayrak-Toydemir P, Nicholas TJ, Rynearson S, Holt C, Miller C, Noble K, Bentley D, Palmquist R, Ostrander B, Manberg S, Bonkowsky JL, Shayota BJ, Jenkins SM. Rapid genome sequencing identifies a novel de novo SNAP25 variant for neonatal congenital myasthenic syndrome. Cold Spring Harb Mol Case Stud 2022; 8:a006242. [PMID: 36379720 PMCID: PMC9808558 DOI: 10.1101/mcs.a006242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital myasthenic syndrome (CMS) is a group of 32 disorders involving genetic dysfunction at the neuromuscular junction resulting in skeletal muscle weakness that worsens with physical activity. Precise diagnosis and molecular subtype identification are critical for treatment as medication for one subtype may exacerbate disease in another (Engel et al., Lancet Neurol 14: 420 [2015]; Finsterer, Orphanet J Rare Dis 14: 57 [2019]; Prior and Ghosh, J Child Neurol 36: 610 [2021]). The SNAP25-related CMS subtype (congenital myasthenic syndrome 18, CMS18; MIM #616330) is a rare disorder characterized by muscle fatigability, delayed psychomotor development, and ataxia. Herein, we performed rapid whole-genome sequencing (rWGS) on a critically ill newborn leading to the discovery of an unreported pathogenic de novo SNAP25 c.529C > T; p.Gln177Ter variant. In this report, we present a novel case of CMS18 with complex neonatal consequence. This discovery offers unique insight into the extent of phenotypic severity in CMS18, expands the reported SNAP25 variant phenotype, and paves a foundation for personalized management for CMS18.
Collapse
Affiliation(s)
- Hayley M Reynolds
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Ting Wen
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- ARUP Laboratories, Salt Lake City, Utah 84108, USA
| | - Andrew Farrell
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Rong Mao
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- ARUP Laboratories, Salt Lake City, Utah 84108, USA
| | - Barry Moore
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Steven E Boyden
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Pinar Bayrak-Toydemir
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- ARUP Laboratories, Salt Lake City, Utah 84108, USA
| | - Thomas J Nicholas
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Shawn Rynearson
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Carson Holt
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | | | | | - Dawn Bentley
- Division of Neonatology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
| | - Betsy Ostrander
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
| | - Stephanie Manberg
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
- Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, Utah 84108, USA
| | - Brian J Shayota
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Sabrina Malone Jenkins
- Division of Neonatology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
8
|
Öztürk S, Güleç A, Erdoğan M, Demir M, Canpolat M, Gümüş H, Çağlayan AO, Dündar M, Per H. Congenital Myasthenic Syndromes in Turkey: Clinical and Molecular Characterization of 16 Cases With Three Novel Mutations. Pediatr Neurol 2022; 136:43-49. [PMID: 36099689 DOI: 10.1016/j.pediatrneurol.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) are composed of numerous hereditary disorders involving genetic mutations in proteins essential to the integrity of neuromuscular transmission. The symptoms of CMS vary according to the age at onset of symptoms, and the type and severity of muscle weakness. Effective treatment and genetic counseling depend upon the underlying pathogenic molecular mechanism and subtype of CMS. METHODS A retrospective and cross-sectional study was performed with 16 patients with a genetically confirmed diagnosis of CMS to share our experience with clinical symptoms, demographic data, genetic variants, and treatments applied. RESULTS Sixteen patients with a specific CMS genetic diagnosis (three novel mutations) were identified, including CHRNE (n = 7), DOK7 (n = 2), AGRN (n = 2), RAPSN (n = 1), CHRNA1 (n = 1), CHRNB1 (n = 1), CHAT (n = 1), and SCN4A (n = 1). Age at onset of symptoms ranged from the neonatal period to 12 years. Genetic diagnosis was confirmed between the ages of three months and 17 years. A significant delay was determined between the onset of symptoms and genetic diagnosis of the disease. CONCLUSIONS This study highlights the importance of genetic testing in CMS. Due to the rarity of CMS, more cases will be recognized and reported as the use of laboratory and genetic testing accelerates. We hope that our experience will grow and contribute further to the literature as clinical follow-up and treatment increase.
Collapse
Affiliation(s)
- Selcan Öztürk
- Fellow in Pediatric Neurology, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Ayten Güleç
- Fellow in Pediatric Neurology, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Murat Erdoğan
- Medical Doctor, Department of Medical Genetics, Kayseri State Hospital, Kayseri, Turkey
| | - Mikail Demir
- Medical Doctor, Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Mehmet Canpolat
- Professor of Pediatrics, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Hakan Gümüş
- Professor of Pediatrics, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Ahmet Okay Çağlayan
- Professor of Genetics, Faculty of Medicine, Department of Genetics, Dokuz Eylül University, Izmir, Turkey
| | - Munis Dündar
- Professor of Genetics, Faculty of Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Hüseyin Per
- Professor of Pediatrics, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
9
|
An R, Chen H, Lei S, Li Y, Xu Y, He C. Abnormal decrement on high-frequency repetitive nerve stimulation in congenital myasthenic syndrome with GFPT1 mutations and review of literature. Front Neurol 2022; 13:926786. [PMID: 36188410 PMCID: PMC9520358 DOI: 10.3389/fneur.2022.926786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous group of inherited disorders characterized by neuromuscular junction defects. Mutations in GFPT1 have been shown to underlie CMS. An increasing number of patients with CMS due to mutations in GFPT1 have been reported. However, a comprehensive review of clinical and genetic analyses of GFPT-related CMS worldwide is lacking, especially, given that the common or hotspot mutations in GFPT1 have not been reported. Here, we described the clinical and genetic findings of three patients with GFPT1 mutations from southwestern China and reviewed the clinical and genetic features of patients with GFPT1-related CMS worldwide. Methods Clinical, laboratory, electrophysiological, myopathological, and genetic analyses of three patients with GFPT1-related CMS from southwestern China were conducted, and a review of previously published or reported cases about congenital myasthenic syndrome with GFPT1 mutations in the PubMed database was made. Results The clinical, laboratory, electrophysiological, and myopathological features by muscle biopsy of three patients with GFPT1-related CMS were consistent with those of previously reported patients with GFPT1 mutations. Additionally, an abnormal decrement in high-frequency RNS was found. Two different homozygous missense mutations (c.331C>T, p.R111C; c.44C>T, p.T15M) were detected by whole-exome sequencing (WES) or targeted neuromuscular disorder gene panels. Conclusion A distinct decremental response to high-frequency RNS was found in three patients with GFPT1-related CMS from southwestern China, which has never been reported thus far. In addition, the location and degree of tubular aggregates (TAs) seemed to be associated with the severity of clinical symptoms and serum creatine kinase levels, further expanding the phenotypic spectrum of GFPT1-related CMS. Lastly, some potential hotspot mutations in GFPT1 have been found in GFPT1-CMS worldwide.
Collapse
Affiliation(s)
- Ran An
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yanming Xu
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
- Chengqi He
| |
Collapse
|
10
|
Huang K, Duan HQ, Li QX, Luo YB, Bi FF, Yang H. Clinicopathological-genetic features of congenital myasthenic syndrome from a Chinese neuromuscular centre. J Cell Mol Med 2022; 26:3828-3836. [PMID: 35670010 PMCID: PMC9279597 DOI: 10.1111/jcmm.17417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Congenital myasthenic syndrome (CMS) encompasses a heterogeneous group of inherited disorders affecting nerve transmission across the neuromuscular junction. The aim of this study was to characterize the clinical, physiological, pathohistological and genetic features of nine unrelated Chinese patients with CMS from a single neuromuscular centre. A total of nine patients aged from neonates to 34 years were enrolled who exhibited initial symptoms. Physical examinations revealed that all patients exhibited muscle weakness. Muscle biopsies demonstrated multiple myopathological changes, including increased fibre size variation, myofibrillar network disarray, necrosis, myofiber grouping, regeneration, fibre atrophy and angular fibres. Genetic testing revealed six different mutated genes, including AGRN (2/9), CHRNE (1/9), GFPT1 (1/9), GMPPB (1/9), PLEC (3/9) and SCN4A (1/9). In addition, patients exhibited differential responses to pharmacological treatment. Prompt utilization of genetic testing will identify novel variants and expand our understanding of the phenotype of this rare syndrome. Our findings contribute to the clinical, pathohistological and genetic spectrum of congenital myasthenic syndrome in China.
Collapse
Affiliation(s)
- Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Qian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Xiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Jiang K, Zheng Y, Lin J, Wu X, Yu Y, Zhu M, Fang X, Zhou M, Li X, Hong D. Diverse myopathological features in the congenital myasthenia syndrome with GFPT1 mutation. Brain Behav 2022; 12:e2469. [PMID: 34978387 PMCID: PMC8865156 DOI: 10.1002/brb3.2469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Mutations in the GFPT1 gene are associated with a particular subtype of congenital myasthenia syndrome (CMS) called limb-girdle myasthenia with tubular aggregates. However, not all patients show tubular aggregates in muscle biopsy, suggesting the diversity of myopathology should be further investigated. METHODS In this study, we reported two unrelated patients clinically characterized by easy fatigability, limb-girdle muscle weakness, positive decrements of repetitive stimulation, and response to pyridostigmine. The routine examinations of myopathology were conducted. The causative gene was explored by whole-exome screening. In addition, we summarized all GFPT1-related CMS patients with muscle biopsy in the literature. RESULTS Pathogenic biallelic GFPT1 mutations were identified in the two patients. In patient one, muscle biopsy indicated vacuolar myopathic changes and atypical pathological changes of myofibrillar myopathy characterized by desmin deposits, Z-disc disorganization, and electronic dense granulofilamentous aggregation. In patient two, muscle biopsy showed typical myopathy with tubular aggregates. Among the 51 reported GFPT1-related CMS patients with muscle biopsy, most of them showed tubular aggregates myopathy, while rimmed vacuolar myopathy, autophagic vacuolar myopathy, mitochondria-like myopathy, neurogenic myopathy, and unspecific myopathic changes were also observed in some patients. These extra-synaptic pathological changes might be associated with GFPT1-deficiency hypoglycosylation and altered function of muscle-specific glycoproteins, as well as partly responsible for the permanent muscle weakness and resistance to acetylcholinesterase inhibitor therapy. CONCLUSIONS Most patients with GFPT1-related CMS had tubular aggregates in the muscle biopsy, but some patients could show great diversities of the pathological change. The myopathological findings might be a biomarker to predict the prognosis of the disease.
Collapse
Affiliation(s)
- Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Lin
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaorong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaobing Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Estephan EP, Zambon AA, Thompson R, Polavarapu K, Jomaa D, Töpf A, Helito PVP, Heise CO, Moreno CAM, Silva AMS, Kouyoumdjian JA, Morita MDP, Reed UC, Lochmüller H, Zanoteli E. Congenital myasthenic syndrome: Correlation between clinical features and molecular diagnosis. Eur J Neurol 2021; 29:833-842. [PMID: 34749429 DOI: 10.1111/ene.15173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To present phenotype features of a large cohort of congenital myasthenic syndromes (CMS) and correlate them with their molecular diagnosis. METHODS Suspected CMS patients were divided into three groups: group A (limb, bulbar or axial weakness, with or without ocular impairment, and all the following: clinical fatigability, electrophysiology compatible with neuromuscular junction involvement and anticholinesterase agents response), group B (limb, bulbar or axial weakness, with or without ocular impairment, and at least one of additional characteristics noted in group A) and group C (pure ocular syndrome). Individual clinical findings and the clinical groups were compared between the group with a confirmed molecular diagnosis of CMS and the group without molecular diagnosis or with a non-CMS molecular diagnosis. RESULTS Seventy-nine patients (68 families) were included in the cohort: 48 in group A, 23 in group B and 8 in group C. Fifty-one were considered confirmed CMS (30 CHRNE, 5 RAPSN, 4 COL13A1, 3 DOK7, 3 COLQ, 2 GFPT1, 1 CHAT, 1 SCN4A, 1 GMPPB, 1 CHRNA1), 7 probable CMS, 5 non-CMS and 16 unsolved. The chance of a confirmed molecular diagnosis of CMS was significantly higher for group A and lower for group C. Some individual clinical features, alterations on biopsy and electrophysiology enhanced specificity for CMS. Muscle imaging showed at least mild alterations in the majority of confirmed cases, with preferential involvement of soleus, especially in CHRNE CMS. CONCLUSIONS Stricter clinical criteria increase the chance of confirming a CMS diagnosis, but may lose sensitivity, especially for some specific genes.
Collapse
Affiliation(s)
- Eduardo P Estephan
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.,Department of Neurology, Hospital Santa Marcelina, Sao Paulo, Brazil.,Department of Medical Clinic, Faculdade de Medicina Santa Marcelina (FASM), Sao Paulo, Brazil
| | - Antonio A Zambon
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Danny Jomaa
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Queen's University School of Medicine, Kingston, ON, Canada
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Paulo V P Helito
- Department of Radiology, Hospital das Clínicas (HCFMUSP), Instituto de Ortopedia (IOT), Sao Paulo, Brazil
| | - Carlos O Heise
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Cristiane A M Moreno
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.,Department of Neurology, Hospital Santa Marcelina, Sao Paulo, Brazil.,Department of Medical Clinic, Faculdade de Medicina Santa Marcelina (FASM), Sao Paulo, Brazil
| | - André M S Silva
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Joao A Kouyoumdjian
- Faculdade Estadual de Medicina de Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, Brazil
| | - Maria da Penha Morita
- Faculdade Estadual de Medicina de Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, Brazil
| | - Umbertina C Reed
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, Ottawa Research Institute, Ottawa, ON, Canada.,Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Hypoventilation syndrome in neuromuscular disorders (NMDs) is primarily due to respiratory muscle weakness and results in increased morbidity and mortality. This article highlights current aspects of neuromuscular hypoventilation syndrome, including pathophysiology, clinical symptoms, assessment, respiratory involvement in various NMD, and causal and symptomatic treatments with an emphasis on recent research and advances. RECENT FINDINGS AND SUMMARY New therapeutic agents have been developed within the last years, proving a positive effect on respiratory system. Symptomatic therapies, including mechanical ventilation and cough assistance approaches, are important in NMD and respiratory muscle training may have benefit in strengthening respiratory muscles and should be offered patients with respiratory muscle weakness the same way as physiotherapy. Correct respiratory assessments and their correct interpretation are hallmarks for early diagnosis of hypoventilation syndrome and treatment.
Collapse
|