1
|
Vaher U, Ilves N, Ilves N, Laugesaar R, Männamaa M, Loorits D, Kool P, Ilves P. Vascular syndrome predicts the development and course of epilepsy after perinatal stroke. Epileptic Disord 2024; 26:471-483. [PMID: 38727601 DOI: 10.1002/epd2.20239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Epilepsy develops in one third of the patients after perinatal stroke. It is still unclear which vascular syndrome of ischemic stroke carries higher risk of epilepsy. The aim of the current study was to evaluate the risk of epilepsy according to the vascular syndrome of perinatal stroke. METHODS The study included 39 children with perinatal arterial ischemic stroke (13 with anterior or posterior trunk of the distal middle cerebral artery occlusion, 23 with proximal or distal M1 middle cerebral artery occlusion and three with lenticulostriate arteria infarction), and 44 children with presumed perinatal venous infarction. Magnetic resonance imaging obtained at the chronic stage was used to evaluate the vascular syndrome of stroke. RESULTS The median follow-up time was 15.1 years (95% CI: 12.4-16.5 years), epilepsy developed in 19/83 (22.9%) patients. The cumulative probability to be without epilepsy at 15 years was 75.4% (95% CI: 65.8-86.4). The probability of having epilepsy was higher in the group of proximal or distal M1 artery occlusion compared to patients with periventricular venous infarction (HR 7.2, 95% CI: 2.5-26, p = .0007). Patients with periventricular venous infarction had significantly more often status epilepticus or spike-wave activation in sleep ≥85% of it compared to patients with anterior or posterior trunk of the distal middle cerebral artery occlusion (OR = 81; 95% CI: 1.3-5046, p = .029). SIGNIFICANCE The emphasis of this study is placed on classifying the vascular syndrome of perinatal stroke and on the targeted follow-up of patients for epilepsy until young adulthood. The risk for having epilepsy after perinatal stroke is the highest in children with proximal or distal M1 middle cerebral artery occlusion. Patients with periventricular venous infarction have a more severe course of epilepsy.
Collapse
Affiliation(s)
- Ulvi Vaher
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Norman Ilves
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Nigul Ilves
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Rael Laugesaar
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mairi Männamaa
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Dagmar Loorits
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Pille Kool
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Pilvi Ilves
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
2
|
Ilves N, Metsvaht T, Laugesaar R, Rull K, Lintrop M, Laan M, Loorits D, Kool P, Ilves P. Periventricular hemorrhagic infarction in preterm neonates: Etiology and time of development. J Neonatal Perinatal Med 2024; 17:111-121. [PMID: 38189714 DOI: 10.3233/npm-230033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND To find the obstetrical and delivery associated risk factors of antenatal and postnatal grade III intraventricular hemorrhage (IVH) or periventricular hemorrhagic infarction (PVHI) in preterm neonates. METHODS A retrospective study of obstetric and delivery associated risk factors included neonates (<35 gestational weeks) with severe IVH/PVHI (n = 120) and a prospectively collected control group (n = 50). The children were divided into: (1) antenatal onset group (n = 27) with insult visible on cerebral ultrasonography within the first 12 hours of birth or periventricular cystic changes visible in PVHI within the first 3 days; (2) neonatal onset group (n = 70) with insult diagnosed after initial normal findings or I-II grade IVH, and (3) unknown time-onset group (n = 23) with insult visible at > 12 h of age. RESULTS The mothers of the antenatal onset group had significantly more bacterial infections before delivery compared to the neonatal onset group: 20/27 (74.1%) versus 23/69 (33.3%), (odds ratio (OR) 5.7 [95% confidence interval 2.1-16]; p = 0.0008) or compared to the control group (11/50 (22%); OR 11 [2.8-42]; p = 0.0005). Placental histology revealed chorioamnionitis more often in the antenatal compared to the neonatal onset group (14/21 (66.7%) versus 16/42 (38.1%), respectively; OR 3.7 [1.18-11]; p = 0.025). Neonates with neonatal development of severe IVH/PVHI had significantly more complications during delivery or intensive care. CONCLUSIONS Bacterial infection during pregnancy is an important risk factor for development of antenatal onset severe IVH or PVHI. In neonates born to mothers with severe bacterial infection during pregnancy, cerebral ultrasonography is indicated for early detection of severe IVH or PVHI.
Collapse
Affiliation(s)
- N Ilves
- Radiology Clinic of Tartu University Hospital, Tartu, Estonia
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - T Metsvaht
- Anesthesiology and Intensive Care Clinic of Tartu University Hospital, Tartu, Estonia
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - R Laugesaar
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - K Rull
- Women's Clinic of Tartu University Hospital, Tartu, Estonia
- Department of Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - M Lintrop
- Radiology Clinic of Tartu University Hospital, Tartu, Estonia
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - M Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - D Loorits
- Radiology Clinic of Tartu University Hospital, Tartu, Estonia
| | - P Kool
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - P Ilves
- Radiology Clinic of Tartu University Hospital, Tartu, Estonia
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Vaher U, Ilves N, Ilves N, Laugesaar R, Männamaa M, Loorits D, Kool P, Ilves P. The thalamus and basal ganglia are smaller in children with epilepsy after perinatal stroke. Front Neurol 2023; 14:1252472. [PMID: 37840930 PMCID: PMC10568465 DOI: 10.3389/fneur.2023.1252472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Background Epilepsy is one of the most serious consequences of perinatal stroke. Epilepsy itself has been proposed as a risk factor for impaired cognitive, language, and behavioral functioning. It is still unclear which children develop epilepsy after perinatal stroke. The current study aimed to evaluate the volume of the thalamus and the basal ganglia in children after perinatal stroke in relation to poststroke epilepsy. Methods The follow-up study included 29 children with perinatal arterial ischemic stroke (AIS), 33 children with presumed periventricular venous infarction (PVI), and 46 age- and sex-matched healthy controls. Magnetic resonance imaging was performed in children between the ages of 4 and 18 years, and volumetric analysis by segmentation was used to evaluate the size of the thalamus, caudate nucleus, putamen, globus pallidus, hippocampus, amygdala, and nucleus accumbens. Results During a median follow-up time of 12.8 years [interquartile range (IQR): 10.8-17.3] in the AIS group and 12.5 years (IQR: 9.3-14.8) in the PVI group (p = 0.32), epilepsy developed in 10 children (34.5%) with AIS and in 4 (12.1%) children with PVI, p = 0.036 [odds ratio (OR) = 3.8, 95%, confidence interval (CI): 1.04-14]. Epilepsy and interictal epileptiform discharges (IEDs) without clinical seizures were more often expressed in children with AIS (n = 16, 55%) than in children with PVI (n = 7, 21.2%), p = 0.0057 (OR = 3.8 95% CI: 1.04-14). In the AIS group, the ipsilesional and contralesional thalamus, ipsilesional caudate nucleus, and nucleus accumbens were significantly smaller in children with epilepsy compared to children without epilepsy. In the PVI group, the ipsilesional thalamus, caudate nucleus, and nucleus accumbens were smaller in the pooled group of epilepsy plus IED alone compared to children without epilepsy. Conclusion In children with AIS, epilepsy or IED occurred more often compared to children with PVI. Both patients with AIS and PVI with severe damage to the basal ganglia and the thalamus have a higher risk of developing poststroke epilepsy and should be monitored more closely throughout childhood to initiate timely antiseizure medication and rehabilitation.
Collapse
Affiliation(s)
- Ulvi Vaher
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Norman Ilves
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Nigul Ilves
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Rael Laugesaar
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mairi Männamaa
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Dagmar Loorits
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Pille Kool
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Pilvi Ilves
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
4
|
Ilves N, Pajusalu S, Kahre T, Laugesaar R, Šamarina U, Loorits D, Kool P, Ilves P. High Prevalence of Collagenopathies in Preterm- and Term-Born Children With Periventricular Venous Hemorrhagic Infarction. J Child Neurol 2023; 38:373-388. [PMID: 37427422 PMCID: PMC10467006 DOI: 10.1177/08830738231186233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate genetic risk factors in term-born children with antenatal periventricular hemorrhagic infarction (PVHI), presumed antenatal periventricular venous infarction and periventricular hemorrhagic infarction in preterm neonates. METHODS Genetic analysis and magnetic resonance imaging were performed in 85 children: term-born children (≥36 gestational weeks) with antenatal periventricular hemorrhagic infarction (n = 6) or presumed antenatal (n = 40) periventricular venous infarction and preterm children (<36 gestational weeks) with periventricular hemorrhagic infarction (n = 39). Genetic testing was performed using exome or large gene panel (n = 6700 genes) sequencing. RESULTS Pathogenic variants associated with stroke were found in 11 of 85 (12.9%) children with periventricular hemorrhagic infarction/periventricular venous infarction. Among the pathogenic variants, COL4A1/A2 and COL5A1 variants were found in 7 of 11 (63%) children. Additionally, 2 children had pathogenic variants associated with coagulopathy, whereas 2 other children had other variants associated with stroke. Children with collagenopathies had significantly more often bilateral multifocal stroke with severe white matter loss and diffuse hyperintensities in the white matter, moderate to severe hydrocephalus, moderate to severe decrease in size of the ipsilesional basal ganglia and thalamus compared to children with periventricular hemorrhagic infarction/periventricular venous infarction without genetic changes in the studied genes (P ≤ .01). Severe motor deficit and epilepsy developed more often in children with collagenopathies compared to children without genetic variants (P = .0013, odds ratio [OR] = 233, 95% confidence interval [CI]: 2.8-531; and P = .025, OR = 7.3, 95% CI: 1.3-41, respectively). CONCLUSIONS Children with periventricular hemorrhagic infarction/periventricular venous infarction have high prevalence of pathogenic variants in collagene genes (COL4A1/A2 and COL5A1). Genetic testing should be considered for all children with periventricular hemorrhagic infarction/periventricular venous infarction; COL4A1/A2 and COL5A1/A2 genes should be investigated first.
Collapse
Affiliation(s)
- Norman Ilves
- Radiology Clinic of Tartu University Hospital; Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Rael Laugesaar
- Children's Clinic of Tartu University Hospital; Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ustina Šamarina
- Genetics and Personalized Medicine Clinic of Tartu University Hospital, Tartu, Estonia
| | - Dagmar Loorits
- Department of Radiology, Radiology Clinic of Tartu University Hospital, Tartu, Estonia
| | - Pille Kool
- Department of Radiology, Radiology Clinic of Tartu University Hospital, Tartu, Estonia
| | - Pilvi Ilves
- Radiology Clinic of Tartu University Hospital; Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|