1
|
Sun X, Yu K, Zhou Y, Dong S, Hu W, Sun Y, Li Y, Xie J, Lee RJ, Sun F, Ma Y, Wang S, Kim BYS, Wang Y, Yang Z, Jiang W, Li Y, Teng L. Self-Assembled pH-Sensitive Polymeric Nanoparticles for the Inflammation-Targeted Delivery of Cu/Zn-Superoxide Dismutase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18152-18164. [PMID: 33764751 DOI: 10.1021/acsami.1c03589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of superoxide dismutase (SOD) is currently limited by its short half-life, rapid plasma clearance rate, and instability. We synthesized a small library of biofriendly amphiphilic polymers that comprise methoxy poly(ethylene glycol)-poly(cyclohexane-1,4-diyl acetone dimethyleneketal) (mPEG-PCADK) and mPEG-poly((cyclohexane86.7%, 1,5-pentanediol13.3%)-1,4-diyl acetone dimethylene ketal) (PK3) for the targeted delivery of SOD. The novel polymers could self-assemble into micellar nanoparticles with favorable hydrolysis kinetics, biocompatibility, long circulation time, and inflammation-targeting effects. These materials generated a better pH-response curve and exhibited better hydrolytic kinetic behavior than PCADK and PK3. The polymers showed good biocompatibility with protein drugs and did not induce an acidic microenvironment during degradation in contrast to materials such as PEG-block-poly(lactic-co-glycolic acid) (PLGA) and PLGA. The SOD that contained reverse micelles based on mPEG2000-PCADK exhibited good circulation and inflammation-targeting properties. Pharmacodynamic results indicated exceptional antioxidant and anti-inflammatory activities in a rat adjuvant-induced arthritis model and a rat peritonitis model. These results suggest that these copolymers are ideal protein carriers for targeting inflammation treatment.
Collapse
Affiliation(s)
- Xiangshi Sun
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Kongtong Yu
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd., Hangzhou, Zhejiang 310000, China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Wenji Hu
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Yating Sun
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Yuhuan Li
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Jing Xie
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Robert J Lee
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fengying Sun
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shengnian Wang
- College of Engineering and Science, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yifan Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Youxin Li
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun, Jilin 130012, China
| |
Collapse
|
2
|
Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats. Int J Biol Macromol 2014; 72:79-87. [PMID: 25124383 DOI: 10.1016/j.ijbiomac.2014.07.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/23/2022]
Abstract
Reactive oxygen species mediated oxidative stress play an important role on the injury of tissue damage and increased attention has been focused on the role of free radicals in diabetes mellitus (DM). In the present study firstly superoxide dismutase (SOD) enzyme was chemically modified with two different polymer and physicochemical properties of these conjugates clearly analyzed. Then, the stability of carboxymethylcellulose-SOD (CMC-SOD) and poly methyl vinyl ether-co-maleic anhydride-SOD (PMVE/MA-SOD) conjugates was investigated against temperature and externally added H2O2. Moreover, we investigated the effect of chemically modified SOD enzyme on lipid peroxidation and antioxidant status in streptozotocin (STZ)-induced diabetic rats. PMVE/MA-SOD conjugate treatment significantly reduced MDA level compared with the control groups, native and CMC-SOD conjugate treated groups in brain, kidney and liver tissue. GSH and SOD enzyme activity in diabetic groups was significantly increased by treatment of CMC-SOD and PMVE/MA-SOD conjugates. The protective effects on degenerative changes in diabetic rats were also further confirmed by histopathological examination. This study provides the preventative activity of SOD-polymer conjugates against complication of oxidative stress in experimentally induced diabetic rats. These results suggest that chemically modified SOD is effective on the oxidative stress-associated disease and offer a therapeutic advantage in clinical use.
Collapse
|
3
|
Villalonga ML, Díez P, Sánchez A, Gamella M, Pingarrón JM, Villalonga R. Neoglycoenzymes. Chem Rev 2014; 114:4868-917. [DOI: 10.1021/cr400290x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Paula Díez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - Alfredo Sánchez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - María Gamella
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - José M. Pingarrón
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| | - Reynaldo Villalonga
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| |
Collapse
|
5
|
Leppänen AS, Xu C, Eklund P, Lucenius J, Österberg M, Willför S. Targeted functionalization of spruceO-acetyl galactoglucomannans-2,2,6,6-tetramethylpiperidin-1-oxyl-oxidation and carbodiimide-mediated amidation. J Appl Polym Sci 2013. [DOI: 10.1002/app.39528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ann-Sofie Leppänen
- Laboratory of Wood and Paper Chemistry; Åbo Akademi University; 20500; Turku; Finland
| | | | - Patrik Eklund
- Laboratory of Organic Chemistry; Åbo Akademi University; 20500; Turku; Finland
| | - Jessica Lucenius
- Department of Forest Products Technology, School of Chemical Technology; Aalto University; 00076; Aalto; Finland
| | - Monika Österberg
- Department of Forest Products Technology, School of Chemical Technology; Aalto University; 00076; Aalto; Finland
| | - Stefan Willför
- Laboratory of Wood and Paper Chemistry; Åbo Akademi University; 20500; Turku; Finland
| |
Collapse
|