1
|
Etcheverry M, Zanini GP. Kinetic study of paraquat adsorption on alginate beads loaded with montmorillonite using shrinking core model. Int J Biol Macromol 2024; 281:136515. [PMID: 39406329 DOI: 10.1016/j.ijbiomac.2024.136515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Water contamination by pesticides threatens clean water availability, highlighting the need for advanced sustainable sanitation systems. Adsorption using biopolymers and minerals is prominent. Understanding process kinetics and influencing parameters is crucial for optimizing contaminant-adsorbent contact time for safe water disposal. The adsorption kinetics of Paraquat (PQ) at three initial concentrations (C0 = 19, 38, and 50 ppm) were studied using alginate-montmorillonite (Alg-Mt) beads with varying clay contents and a 30-min gelation time. The beads were characterized by elemental analysis, TG/DTG, FTIR, XRD, SEM, and EDX. The Shrinking Core Model (SCM) was applied to the experimental data to determine if the diffusion of PQ within the beads depended on clay content. The effective diffusion coefficient (Dp) in the adsorbent increased from 7 × 10-12 to 1 × 10-10 m2 s-1 with increasing clay content, suggesting that diffusion into the interior depended on interaction with the mineral. This investigation also demonstrated that the synthesis of beads at different gelation times does not impact either the adsorption capacity or the adsorption rate of the herbicide on the materials. These results indicate that diffusion depends solely on the interaction of the cationic herbicide with the clay encapsulated within the bead hydrogel.
Collapse
Affiliation(s)
- Mariana Etcheverry
- Instituto de Química del Sur (INQUISUR), CONICET - Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina.
| | - Graciela P Zanini
- Instituto de Química del Sur (INQUISUR), CONICET - Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina.
| |
Collapse
|
2
|
Khasteband M, Sharifi Y, Akbari A. Chrysin loaded polycaprolactone-chitosan electrospun nanofibers as potential antimicrobial wound dressing. Int J Biol Macromol 2024; 263:130250. [PMID: 38368985 DOI: 10.1016/j.ijbiomac.2024.130250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
In this study, various concentrations of chrysin (chry) were loaded into polycaprolactone-chitosan (PCL-CTS) nanofibers to develop a potential wound dressing materials using electrospinning method. The structural composition and the morphology of the produced PCL-CTS5, PCL-CTS10 and PCL-CTS15 were analyzed by FE-SEM and FTIR, respectively. By increasing the amount of chry, the average diameter of the nanofibres was also increased to 191 ± 65 nm, 203 ± 72 nm, and 313 ± 69 nm for PCL-CTS5, PCL-CTS10, and PCL-CTS15, respectively. Moreover, the physicochemical characteristics and biological properties of synthesized nanofibers such as tensile testing, in-vitro drug release, porosity, decomposition rate, water absorption rate, water vapor permeability rate, cell viability, antioxidant and antibacterial activity were evaluated. By using Korsmeyer-Peppas and Higuchi kinetic models, the chry release mechanism in all nanofibers was studied in PBS solution, which suggested a Fick's diffusion. In-vitro antioxidant experiments by DPPH assay indicated 24, 43, 61 and 78 % free radical scavenging activity for PCL-CTS, PCL-CTS5, PCL-CTS10 and PCL-CTS15. In-vitro antibacterial examination showed that chry-loaded nanofibers had high antibacterial activity in which were comparable with the standard reagents. In-vitro cytotoxicity results obtained by MTT assay indicated a desired cytocompatibility towards fibroblast cells.
Collapse
Affiliation(s)
- Motahare Khasteband
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaeghob Sharifi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Kamalipooya S, Fahimirad S, Abtahi H, Golmohammadi M, Satari M, Dadashpour M, Nasrabadi D. Diabetic wound healing function of PCL/cellulose acetate nanofiber engineered with chitosan/cerium oxide nanoparticles. Int J Pharm 2024; 653:123880. [PMID: 38350498 DOI: 10.1016/j.ijpharm.2024.123880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
The use of cerium oxide nanoparticles (CeO2NPs) in diabetic wound repair substances has shown promising results. Therefore, the study was conducted to introduce a novel nano-based wound dressing containing chitosan nanoparticles encapsulated with green synthesized cerium oxide nanoparticles using Thymus vulgaris extract (CeO2-CSNPs). The physical properties and structure of the nanoparticles were analyzed using XRD, DLS, FESEM and FTIR techniques. The electrospun PCL/cellulose acetate-based nanofiber was prepared and CeO2-CSNPs were integrated on the PCL/CA membrane by electrospraying. The physicochemical properties, morphology and biological characteristics of the electrospun nanocomposite were evaluated. The results showed that the nanocomposite with 0.1 % CeO2-CSNPs exhibited high antibacterial performance against S. aureus (<58.59 µg/mL). The PCL/CA/CeO2-CSNPs nanofiber showed significant antioxidant activity up to 89.59 %, cell viability improvement, and cell migration promotion up to 90.3 % after 48 h. The in vivo diabetic wound healing experiment revealed that PCL/CA/CeO2-CSNPs nanofibers can significantly increase the repair rate of diabetic wounds by up to 95.47 % after 15 days. The results of this research suggest that PCL/CA nanofiber mats functionalized with CeO2-CSNPs have the potential to be highly effective in treating diabetes-related wounds.
Collapse
Affiliation(s)
- Samaneh Kamalipooya
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Morteza Golmohammadi
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran
| | - Mohammad Satari
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Heydari A, KhajeHassani M, Daneshafruz H, Hamedi S, Dorchei F, Kotlár M, Kazeminava F, Sadjadi S, Doostan F, Chodak I, Sheibani H. Thermoplastic starch/bentonite clay nanocomposite reinforced with vitamin B 2: Physicochemical characteristics and release behavior. Int J Biol Macromol 2023; 242:124742. [PMID: 37148934 DOI: 10.1016/j.ijbiomac.2023.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
This study presents the development and characterization of a nanocomposite material, consisting of thermoplastic starch (TPS) reinforced with bentonite clay (BC) and encapsulated with vitamin B2 (VB). The research is motivated by the potential of TPS as a renewable and biodegradable substitute for petroleum-based materials in the biopolymer industry. The effects of VB on the physicochemical properties of TPS/BC films, including mechanical and thermal properties, water uptake, and weight loss in water, were investigated. In addition, the surface morphology and chemical composition of the TPS samples were analyzed using high-resolution SEM microscopy and EDS, providing insight into the structure-property relationship of the nanocomposites. The results showed that the addition of VB significantly increased the tensile strength and Young's modulus of TPS/BC films, with the highest values observed for nanocomposites containing 5 php of VB and 3 php of BC. Furthermore, the release of VB was controlled by the BC content, with higher BC content leading to lower VB release. These findings demonstrate the potential of TPS/BC/VB nanocomposites as environmentally friendly materials with improved mechanical properties and controlled release of VB, which can have significant applications in the biopolymer industry.
Collapse
Affiliation(s)
- Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia; National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešťany, Slovakia.
| | - Milad KhajeHassani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Haniyeh Daneshafruz
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Sepideh Hamedi
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| | - Faeze Dorchei
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Mário Kotlár
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, Bratislava 81243, Slovakia
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Farideh Doostan
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ivan Chodak
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Hassan Sheibani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| |
Collapse
|
5
|
Sharma H, Sharma S, Bajwa J, Chugh R, Kumar D. Polymeric carriers in probiotic delivery system. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
6
|
Source-normalized error analysis method for accurate prediction of adsorption isotherm: application to Cu(II) adsorption on PVA-blended alginate beads. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Ge X, Sun Y, Kong J, Mao M, Yu H, Arora A, Suppavorasatit I, Wang Y. The thermal resistance and targeting release of zein-sodium alginate binary complexes as a vehicle for the oral delivery of riboflavin. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:92-102. [PMID: 36618050 PMCID: PMC9813308 DOI: 10.1007/s13197-022-05591-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 01/11/2023]
Abstract
Riboflavin (RF) is one kind of vitamin B, which has low bioavailability due to the low water solubility and the high photosensitivity during food processing and storage. The anti-solvent precipitation method was applied to fabricate a zein-sodium alginate (SA) binary complexes delivery system with the loading of RF, which was aimed to enhance the delivery efficiency, stability, and controlled release of RF in the gastrointestinal (GI) tract. The formation mechanism, physicochemical properties as well as the digestion behaviors were investigated. The incorporation of SA significantly increased the diameter and decreased the surface positive charge of the nanoparticles. The surface morphology of the nanoparticles was characterized using the scanning electron microscope. The FTIR analysis revealed that the electrostatic attraction was the dominant binding force in the formation of the zein-SA binary complexes nanoparticles. In addition, the study on the in vitro release process showed that the zein-SA nanoparticles could delay the release of the RF under the simulated GI tract conditions, which improved their oral bioavailability. In summary, the zein-SA nanoparticle is an effective vehicle for the oral delivery of RF as well as other vitamins and bioactives in the applications of food and nutrition.
Collapse
Affiliation(s)
- Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
| | - Amit Arora
- Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Inthawoot Suppavorasatit
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayatai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| |
Collapse
|
8
|
Sustainable alginate-carboxymethyl cellulose superabsorbents prepared by a novel quasi-cryogelation method. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03185-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Bhat AH, Rangreez TA, Inamuddin, Chisti HTN. Wastewater Treatment and Biomedical Applications of Montmorillonite
Based Nanocomposites: A Review. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200729123309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Rapid industrialisation, population growth and technological race worldwide have brought adverse
consequences on water resources and as a result affect human health. Toxic metal ions, non-biodegradable dyes, organic
pollutants, pesticides, pharmaceuticals are among the chief hazardous materials released into the water bodies from various
sources. These hazardous contaminants drastically affect the flora and fauna globally leading to health deterioration there
by giving rise to new biomedical challenges.
Hypothesis::
Montmorillonite based nanocomposites (MMTCs) have drawn an attention of the researchers to design
environmental friendly, advanced and hygienic nanocomposites for wastewater treatment and biomedical purposes.
Montmorillonite clay possesses peculiar physical and chemical properties that include enhanced surface reactivity, improved
rheological performance, exorbitant miscibility in water due to which it shows highly favourable interactions with polymers,
drugs, metals, mixed metals and metal oxides leading to the fabrication of different types of advanced montmorillonite
based nanocomposites that have remarkable applications
Methodology::
Here we review the structural characteristics of montmorillonite clay, advances in the synthetic techniques
involved in the fabrication of montmorillonite nanocomposites, their applications in waste water treatment and in bio
medical field. The recently developed montmorillonite nanocomposites for (1) waste water treatment as nano-adsorbents
for the elimination of toxic inorganic species such as metal ions and heterogeneous photo-catalysts for photo degradation
of dyes, pesticides and pharmaceuticals (2) biomedical utilization viz drug delivery, wound amelioration, bone cement,
tissue engineering etc. are presented
Conclusion::
The review exclusively focuses on recent research on montmorillonite based nanocomposites and their
application in wastewater treatment and in biomedical field
Collapse
Affiliation(s)
- Aabid Hussain Bhat
- Department of Chemistry, National Institute of Technology, Srinagar, J&K-190006,India,India
| | | | - Inamuddin
- Department of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah,Saudi Arabia
| | | |
Collapse
|
10
|
Shabanpour S, Shariati FP, Khatibani AB. Potential Alendronate Sodium drug carrier by preparation and characterization of sodium alginate cross-linked Montmorillonite. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Kulkarni P, Watwe V, Doltade T, Kulkarni S. Fractal kinetics for sorption of Methylene blue dye at the interface of Alginate Fullers earth composite beads. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Yan M, Chen T, Zhang S, Lu T, Sun X. A core-shell structured alginate hydrogel beads with tunable thickness of carboxymethyl cellulose coating for pH responsive drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:763-778. [PMID: 33345720 DOI: 10.1080/09205063.2020.1866350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
pH-responsive core-shell structured composite hydrogel beads, composed of a alginate (ALG) core coated with carboxymethyl cellulose (CMC) shell (ALG@CMC), were prepared by using in-situ gel preparation technology as a drug delivery system. An anti-inflammatory drug, indomethacin was loaded into the formed hydrogels as a model drug. The resulting gel samples were characterized by Fourier transforms infrared (FTIR) spectroscopy, thermo-gravimetric (TG) analysis, and scanning electron microscopy (SEM). The mechanical stability of all samples in phosphate buffered solution (PBS, pH 7.4) was approximately measured through oscillation experiments. Swelling and controlled drug release behaviors of ALG@CMC beads compared with ALG were studied in simulating gastric fluid of pH 1.2 or intestinal fluid of pH 7.4 at 37 °C. Oscillation experiments proved that the mechanical stability of ALG@CMC beads could be significantly improved by the CMC shell layer. The swelling and drug release behaviors revealed that the swelling and drug release rate of ALG@CMC beads were obviously slower than that of simple-ALG and both have significant pH responsiveness. The cumulative drug release from ALG, ALG@CMC-1, ALG@CMC-2 and ALG@CMC-3 was about 100%, 67%, 46% and 37% in simulated intestinal fluid of pH 7.4, respectively, while the drug release reached only about 2.0% in simulating gastric fluid of pH 1.2 within 720 min. These developed materials could potentially be employed as a pH-responsive drug delivery device in vivo.[Formula: see text].
Collapse
Affiliation(s)
- Mingzhu Yan
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Tiantian Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Shuping Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ting Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ximeng Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym 2021; 259:117640. [PMID: 33673981 DOI: 10.1016/j.carbpol.2021.117640] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 12/20/2022]
Abstract
In this study, the electrospun poly(ε-caprolactone) (PCL)/Chitosan (CS)/curcumin (CUR) nanofiber was fabricated successfully with curcumin loaded chitosan nano-encapsulated particles (CURCSNPs). The morphology of the produced CURCSNPs, PCL, PCL/CS, PCL/CS/CUR, and PCL/CS/CUR electrosprayed with CURCSNPs were analyzed by scanning electron microscopy (SEM). The physicochemical properties and biological characteristics of fabricated nanofibers such as antibacterial, antioxidant, cell viability, and in vivo wound healing efficiency and histological assay were tested. The electrospraying of CURCSNPs on surface PCL/CS/CUR nanofiber resulted in the enhanced antibacterial, antioxidant, cell proliferation efficiencies and higher swelling and water vapor transition rates. In vivo examination and Histological analysis showed PCL/CS/CUR electrosprayed with CURCSNPs led to significant improvement of complete well-organized wound healing process in MRSA infected wounds. These results suggest that the application of PCL/CS/CUR electrosprayed with CURCSNPs as a wound dressing significantly facilitates wound healing with notable antibacterial, antioxidant, and cell proliferation properties.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Parastu Satei
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran; Department of Medical Laboratory Sciences, Arak School of Paramedicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohsen Moslehi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran; Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
14
|
Fereydouni N, Movaffagh J, Amiri N, Darroudi S, Gholoobi A, Goodarzi A, Hashemzadeh A, Darroudi M. Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Sci Rep 2021; 11:1902. [PMID: 33479286 PMCID: PMC7820604 DOI: 10.1038/s41598-020-73678-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Curcumin contains many biological activities as a natural bioactive substance, however, its low solubility stands as a huge bioavailability disadvantage. Recently, different methods have been developed for utilizing the tremendous medicinal properties of this material. In this study, an Oil/Water nano-emulsion of curcumin (Nano-CUR) has been woven in zein polymer at three percentages of 5%, 10%, and 15% (v/v). We have investigated the physicochemical properties of nanofibers (NFs) including FESEM, FTIR, tensile strength, encapsulation efficiency, and release profile, as well as biological properties. According to the data, the NFs have been observed to become significantly thinner and more uniformed as the involved percentage of Nano-CUR had been increased from 5 to 15%. It is considerable that the tensile strength can be increased by heightening the existing Nano-CUR from 5% towards 15%. The resultant NFs of zein/Nano-CUR 15% have exhibited higher in vitro release and lower encapsulation efficiency than the other evaluated zein/Nano-CUR NFs. It has been confirmed through the performed viability and antioxidant studies that zein/Nano-CUR 10% NFs are capable of providing the best conditions for cell proliferation. Considering the mentioned facts, this work has suggested that Nano-CUR can be successfully woven in zein NFs and maintain their biological properties.
Collapse
Affiliation(s)
- Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran. .,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran. .,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jebrail Movaffagh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafise Amiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Darroudi
- Student Research Committee, International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Hashemzadeh
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109777] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Kahya N, Gölcü A, Erim FB. Barium ion cross-linked alginate-carboxymethyl cellulose composites for controlled release of anticancer drug methotrexate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Kahya N, Erim FB. Surfactant modified alginate composite gels for controlled release of protein drug. Carbohydr Polym 2019; 224:115165. [PMID: 31472829 DOI: 10.1016/j.carbpol.2019.115165] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023]
Abstract
This study aims to modify alginate with sodium dodecyl sulfate (SDS) to reduce the release of oral protein in the acidic stomach environment and transport it to the colon medium. Bovine serum albumin (BSA), which was chosen as a model protein, was loaded into surfactant modified calcium alginate beads (SDS/Ca-Alg). The encapsulation efficiency of BSA in SDS/Ca-Alg beads was found significantly higher (96.3%) compared to that of beads without SDS. The most remarkable result is that protein release from the modified gel in the stomach environment was significantly reduced compared to protein release from the plain alginate gel. At the same time, the release time of the whole drug in the intestinal environment was significantly prolonged. The SDS-modified alginate beads are proposed as suitable carriers for the passage of orally taken protein-type drugs into the colon medium by preventing their degradation in acidic gastric fluid.
Collapse
Affiliation(s)
- Nilay Kahya
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - F Bedia Erim
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
18
|
Luo C, Yang Q, Lin X, Qi C, Li G. Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres. Int J Biol Macromol 2019; 125:721-729. [DOI: 10.1016/j.ijbiomac.2018.12.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
|
19
|
Paramita VD, Kasapis S. Molecular dynamics of the diffusion of natural bioactive compounds from high-solid biopolymer matrices for the design of functional foods. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Rejinold NS, Kim HK, Isakovic AF, Gater DL, Kim YC. Therapeutic vitamin delivery: Chemical and physical methods with future directions. J Control Release 2019; 298:83-98. [DOI: 10.1016/j.jconrel.2019.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
|
21
|
Mehrpouya F, Yue Z, Romeo T, Gorkin R, Kapsa RMI, Moulton SE, Wallace GG. A simple technique for development of fibres with programmable microsphere concentration gradients for local protein delivery. J Mater Chem B 2019; 7:556-565. [PMID: 32254789 DOI: 10.1039/c8tb01504j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alginate has been a biologically viable option for controlled local delivery of bioactive molecules in vitro and in vivo. Specific bioactive molecule release profiles are achieved often by controlling polymer composition/concentration, which also determines the modulus of hydrogels. This largely limits alginate-mediated bioactive molecule delivery to single-factors of uniform concentration applications, rather than applications that may require (multiple) bioactive molecules delivered at a concentration gradient for chemotactic purposes. Here we report a two-phase PLGA/alginate delivery system composed of protein-laden poly-d,l-lactic-co-glycolic acid (PLGA) microspheres wet-spun into alginate fibres. Fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) was used as a model protein and the developed structures were characterized. The fabrication system devised was shown to produce wet-spun fibres with a protein concentration gradient (G-Alg/PLGA fibre). The two-phase delivery matrices display retarded FITC-BSA release in both initial and late stages compared to release from the PLGA microspheres or alginate fibre alone. In addition, incorporation of higher concentrations of protein-loaded PLGA microspheres increased protein release compared to the fibres with lower concentrations of BSA-loaded microspheres. The "programmable" microsphere concentration gradient fibre methodology presented here may enable development of novel alginate scaffolds with the ability to guide tissue regeneration through tightly-controlled release of one or more proteins in highly defined spatio-temporal configurations.
Collapse
Affiliation(s)
- Fahimeh Mehrpouya
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang J, Feng F, Han B, Wang D, Fu L, He L, Zhao Y, Mo H, Shen J. Antibacterial activity, cell toxicity, and mechanical property of ultra-high molecular weight polyethylene/chlorhexidine acetate–montmorillonite nanocomposite. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518809111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nanocomposites have been extensively used in many fields. Their properties can be improved or enhanced by the components in the nanocomposites. In this study, we reported the antibacterial activity, cell toxicity, and mechanical property of a three-component nanocomposite which consisted of ultra-high molecular weight polyethylene (UHMWPE), chlorhexidine acetate (CA), and montmorillonite (MMT). This nanocomposite (UHMWPE/CA-MMT) maintained good short-term resistance to bacterial adhesion, and its long-term resistance to bacterial adhesion was significantly improved as the interlayer space in montmorillonite prevented effectively the agglomeration and precipitation of chlorhexidine acetate after the intercalation of chlorhexidine acetate into montmorillonite. Also, its cell toxicity was reduced as the interlayer space in montmorillonite inhibited the release rate of chlorhexidine acetate. In addition, the mechanical property of UHMWPE/CA-MMT was improved because of the synergistic optimization of these three components. These findings suggested that this three-component nanocomposite UHMWPE/CA-MMT may be a promising biomaterial.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Fuling Feng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Bing Han
- School of Material Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Dawei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Lei Fu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Lei He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yue Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Hong Mo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Eslami M, Shahedi M, Fathi M. Development of Hydrogels for Entrapment of Vitamin D3: Physicochemical Characterization and Release Study. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9534-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Farzamfar S, Naseri-Nosar M, Samadian H, Mahakizadeh S, Tajerian R, Rahmati M, Vaez A, Salehi M. Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: In vitro and in vivo evaluation. J BIOACT COMPAT POL 2018; 33:282-294. [DOI: 10.1177/0883911517737103] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In this study, taurine (2-aminoethane sulfonic acid), an amino acid found in large amounts in most mammalian tissues, was incorporated with poly (ε-caprolactone) and gelatin in order to develop a drug-loaded composite wound dressing material. The composite mats from poly (ε-caprolactone)/gelatin (1:1 (w/w)) solution incorporated with 3%, 5%, and 10% (w/w) of taurine were produced by electrospinning. The electrospun mats were evaluated regarding their morphology, wettability, water uptake capacity, water vapor transmission rate, tensile strength, and cellular response with L929 cell line. The mat containing 5% of taurine was chosen as the optimum dressing for in vivo study on the full-thickness excisional wounds of Wistar rats. The results showed that after 2 weeks, the wounds treated with the taurine-loaded dressing achieved a significant closure to nearly 92% compared with the sterile gauze, as control, which showed nearly 68% of wound closure. The histological examination of the wounds revealed that the wounds treated with the taurine-loaded dressing had densely packed collagen fibers with parallel alignment. Whereas, the sterile gauze–treated wounds had loosely packed collagen fibers with an irregular arrangement. Our results provided evidence supporting the possible applicability of the taurine-loaded wound dressings for successful wound treatment.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Naseri-Nosar
- Departments of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Samadian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roksana Tajerian
- Departments of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Rahmati
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- Departments of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
25
|
Naseri-Nosar M, Farzamfar S, Sahrapeyma H, Ghorbani S, Bastami F, Vaez A, Salehi M. Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:366-372. [DOI: 10.1016/j.msec.2017.08.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023]
|
26
|
Kaygusuz H, Torlak E, Akın-Evingür G, Özen İ, von Klitzing R, Erim FB. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing. Int J Biol Macromol 2017; 105:1161-1165. [DOI: 10.1016/j.ijbiomac.2017.07.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/05/2017] [Accepted: 07/23/2017] [Indexed: 01/25/2023]
|
27
|
Naseri-Nosar M, Farzamfar S, Salehi M, Vaez A, Tajerian R, Azami M. Erythropoietin/aloe vera-releasing wet-electrospun polyvinyl alcohol/chitosan sponge-like wound dressing: In vitro and in vivo studies. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517731793] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mahdi Naseri-Nosar
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roksana Tajerian
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Cavalu S, Prokisch J, Laslo V, Vicas S. Preparation, structural characterisation and release study of novel hybrid microspheres entrapping nanoselenium, produced by green synthesis. IET Nanobiotechnol 2017; 11:426-432. [PMID: 28530192 DOI: 10.1049/iet-nbt.2016.0107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The main goal of this study was to synthesise and characterise different formulations based on alginate and alginate/chitosan microspheres containing nanoselenium (nano-Se) for controlled delivery applications. Nanosize elemental selenium was produced by using probiotic yogurt bacteria (Lactobacillus casei) in a fermentation procedure. The structural and morphological characterisation of the microspheres was performed by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. FTIR and XRD pattern indicated that was an effective cross-linking of selenium nanoparticles within the polymeric matrix in both cases. The SEM images reveal that selenium nanoparticles are mainly exposed on the surface of alginate, in contrast to porous structure of alginate/chitosan/nano-Se, interconnected in a regular network. This architecture type has a considerable importance in the delivery process, as demonstrated by differential pulse voltammetry. Selenium release from both matrices is pH sensitive. Moreover, chitosan blended with alginate minimise the release of encapsulated selenium, in simulated gastric fluid, and prolong the duration of release in intestinal fluid. The overall effect is the enhancement of total percentage release concomitant with the longer duration of action. The authors' formulation based on alginate/chitosan is a convenient matrix to be used for selenium delivery in duodenum, caecum and colon.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087, Oradea, Romania.
| | - Jόszef Prokisch
- Institute of Bio- and Environmental Energetics, Debrecen University, Boszormenyi Utca 138, Debrecen 4032, Hungary
| | - Vasile Laslo
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410048, Oradea, Romania
| | - Simona Vicas
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410048, Oradea, Romania
| |
Collapse
|
29
|
Naseri-Nosar M, Salehi M, Farzamfar S, Azami M. The single and synergistic effects of montmorillonite and curcumin-loaded chitosan microparticles incorporated onto poly(lactic acid) electrospun film on wound-healing. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517724809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri-Nosar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahrud, Iran
| | - Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
|
31
|
Couto R, Alvarez V, Temelli F. Encapsulation of Vitamin B2 in solid lipid nanoparticles using supercritical CO 2. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.05.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
|
33
|
Kaygusuz H, Evingür GA, Pekcan Ö, von Klitzing R, Erim FB. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. Int J Biol Macromol 2016; 92:220-224. [PMID: 27381586 DOI: 10.1016/j.ijbiomac.2016.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/04/2016] [Accepted: 07/01/2016] [Indexed: 11/15/2022]
Abstract
This paper addresses the controlled variation of the mechanical properties of alginate gel beads by changing the alginate concentration or by adding different surfactants or cross-linking cations. Alginate beads containing nonionic Brij 35 or anionic sodium dodecyl sulfate (SDS) surfactants were prepared with two different types of cations (Ca2+, Ba2+) as crosslinkers. Compression measurements were performed to investigate the effect of the surfactant and cation types and their concentrations on the Young's modulus of alginate beads. The Young's modulus was determined by using Hertz theory. For all types of alginate gel beads the Young's modulus showed an increasing value for increasing alginate contents. Addition of the anionic surfactant SDS increases the Young's modulus of the alginate beads while the addition of non-ionic surfactant Brij 35 leads to a decrease in Young's modulus. This opposite behavior is related to the contrary effect of both surfactants on the charge of the alginate beads. When Ba2+ ions were used as crosslinker cation, the Young's modulus of the beads with the surfactant SDS was found to be approximately two times higher than the modulus of beads with the surfactant Brij 35. An ion specific effect was found for the crosslinking ability of divalent cations.
Collapse
Affiliation(s)
- Hakan Kaygusuz
- Istanbul Technical University, Faculty of Science and Letters, Maslak 34469 Istanbul, Turkey; Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Gülşen Akın Evingür
- Piri Reis University, Faculty of Science and Letters, Tuzla 34940 Istanbul, Turkey
| | - Önder Pekcan
- Kadir Has University, Faculty of Science and Letters, Cibali, 34083 Istanbul, Turkey
| | - Regine von Klitzing
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - F Bedia Erim
- Istanbul Technical University, Faculty of Science and Letters, Maslak 34469 Istanbul, Turkey.
| |
Collapse
|