1
|
Chelminiak-Dudkiewicz D, Machacek M, Dlugaszewska J, Wujak M, Smolarkiewicz-Wyczachowski A, Bocian S, Mylkie K, Goslinski T, Marszall MP, Ziegler-Borowska M. Fabrication and characterization of new levan@CBD biocomposite sponges as potential materials in natural, non-toxic wound dressing applications. Int J Biol Macromol 2023; 253:126933. [PMID: 37722631 DOI: 10.1016/j.ijbiomac.2023.126933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Wound healing is a complex process; therefore, new dressings are frequently required to facilitate it. In this study, porous bacterial levan-based sponges containing cannabis oil (Lev@CBDs) were prepared and fully characterized. The sponges exhibited a suitable swelling ratio, proper water vapor transmission rate, sufficient thermal stability, desired mechanical properties, and good antioxidant and anti-inflammatory properties. The obtained Lev@CBD materials were evaluated in terms of their interaction with proteins, human serum albumin and fibrinogen, of which fibrinogen revealed the highest binding effect. Moreover, the obtained biomaterials exhibited antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, as well as being non-hemolytic material as indicated by hemolysis tests. Furthermore, the sponges were non-toxic and compatible with L929 mouse fibroblasts and HDF cells. Most significantly, the levan sponge with the highest content of cannabis oil, in comparison to others, retained its non-hemolytic, anti-inflammatory, and antimicrobial properties after prolonged storage in a climate chamber at a constant temperature and relative humidity. The designed sponges have conclusively proven their beneficial physicochemical properties and, at the preliminary stage, biocompatibility as well, and therefore can be considered a promising material for wound dressings in future in vivo applications.
Collapse
Affiliation(s)
- Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500-05 Hradec Kralove, Czech Republic
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Aleksander Smolarkiewicz-Wyczachowski
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Szymon Bocian
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - T Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 10, 60-780 Poznan, Poland
| | - Michal P Marszall
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
2
|
Rezaei Kolarijani N, Cheraghali D, Khastar H, Ehterami A, Alizade M, Vaez A, Amini SM, Salehi M. Nanofibrous polycaprolactone/gelatin scaffold containing gold nanoparticles: Physicochemical and biological characterization for wound healing. Wound Repair Regen 2023; 31:804-815. [PMID: 37955556 DOI: 10.1111/wrr.13126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
In this study, gold nanoparticles were loaded into poly (ε-caprolactone) (PCL)/gelatin nanofibrous matrices to fabricate a potential wound dressing. The mats were produced by electrospinning of PCL/gelatin solution supplemented with synthesized gold nanoparticles (200, 400 and 800 ppm). Prepared scaffolds were investigated regarding their chemical properties, morphology, mechanical properties, surface wettability, water-uptake capacity, water vapor permeability, porosity, blood compatibility, microbial penetration test and cellular response. In addition to in vivo study, a full-thickness excisional wound in a rat model was used to evaluate the healing effect of prepared scaffolds. Results showed appropriate mechanical properties and porosity of prepared scaffolds. With L929 cells, the PCL/gelatin scaffold containing 400 ppm gold nanoparticles demonstrated the greatest cell growth. In vivo results validated the favorable wound-healing benefits of the scaffold incorporating gold nanoparticles, which triggered wound healing compared to sterile gauze. Our results showed the capability of nanofibrous matrices containing gold nanoparticles for successful wound treatment.
Collapse
Affiliation(s)
- Nariman Rezaei Kolarijani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Danial Cheraghali
- Department of Mechanical Engineering, New Jersey Institute of Technology, New Jersey, USA
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Morteza Alizade
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Center Incubator Technology Health of Medical Science, University of Shahroud, Shahroud, Iran
| |
Collapse
|
3
|
Farzamfar S, Elia E, Richer M, Chabaud S, Naji M, Bolduc S. Extracellular Matrix-Based and Electrospun Scaffolding Systems for Vaginal Reconstruction. Bioengineering (Basel) 2023; 10:790. [PMID: 37508817 PMCID: PMC10376078 DOI: 10.3390/bioengineering10070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Congenital vaginal anomalies and pelvic organ prolapse affect different age groups of women and both have significant negative impacts on patients' psychological well-being and quality of life. While surgical and non-surgical treatments are available for vaginal defects, their efficacy is limited, and they often result in long-term complications. Therefore, alternative treatment options are urgently needed. Fortunately, tissue-engineered scaffolds are promising new treatment modalities that provide an extracellular matrix (ECM)-like environment for vaginal cells to adhere, secrete ECM, and be remodeled by host cells. To this end, ECM-based scaffolds or the constructs that resemble ECM, generated by self-assembly, decellularization, or electrospinning techniques, have gained attention from both clinicians and researchers. These biomimetic scaffolds are highly similar to the native vaginal ECM and have great potential for clinical translation. This review article aims to discuss recent applications, challenges, and future perspectives of these scaffolds in vaginal reconstruction or repair strategies.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1666677951, Iran
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Yang X, Mo W, Shi Y, Fang X, Xu Y, He X, Xu Y. Fumaria officinalis-loaded chitosan nanoparticles dispersed in an alginate hydrogel promote diabetic wounds healing by upregulating VEGF, TGF-β, and b-FGF genes: A preclinical investigation. Heliyon 2023; 9:e17704. [PMID: 37519642 PMCID: PMC10372204 DOI: 10.1016/j.heliyon.2023.e17704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic wounds may become chronic if left untreated. In the current study, a potential wound dressing was developed by incorporating fumaria officinalis extract-loaded chitosan nanoparticles (FOE-CHNPs) into calcium alginate hydrogel. The produced hydrogel was evaluated regarding its microarchitecture, cytotoxicity, cell migration activity, cytoprotective potential, porosity, in vitro anti-inflammatory activity, and drug release profile. Then, the healing function of FOE-CHNPs/calcium alginate hydrogel was compared with a marketed wound care product in a rat model of diabetic wound. In vitro study showed that the hydrogel system promoted skin cells viability and migration. In vivo wound healing assay showed that the animals treated with the FOE-CHNPs/calcium alginate hydrogel had comparable wound healing potential with the GranuGEL® as the marketed wound care hydrogel. Gene expression studies showed that FOE-CHNPs/calcium alginate hydrogel upregulated the tissue expression levels of collagen type 1, collagen type 2, VEGF, b-FGF and TGF-B genes. This preclinical research, suggests potential use of FOE-loaded calcium alginate hydrogel system in treating diabetic wounds in the clinic.
Collapse
Affiliation(s)
- Xi Yang
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Wenqian Mo
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Yan Shi
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Xiang Fang
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Yujian Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Xiaoqing He
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Yongqing Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| |
Collapse
|
5
|
Rahimi F, Ahmadkhani N, Goodarzi A, Noori F, Hassanzadeh S, Saghati S, Khanmohammadi M, Goodarzi A. Gelatin-based hydrogel functionalized with taurine moieties for in vivo skin tissue regeneration. Biodes Manuf 2023. [DOI: 10.1007/s42242-022-00227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Elangwe CN, Morozkina SN, Olekhnovich RO, Polyakova VO, Krasichkov A, Yablonskiy PK, Uspenskaya MV. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. Int J Mol Sci 2023; 24:ijms24054962. [PMID: 36902394 PMCID: PMC10003054 DOI: 10.3390/ijms24054962] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is a complex process of overlapping phases with the primary aim of the creation of new tissues and restoring their anatomical functions. Wound dressings are fabricated to protect the wound and accelerate the healing process. Biomaterials used to design dressing of wounds could be natural or synthetic as well as the combination of both materials. Polysaccharide polymers have been used to fabricate wound dressings. The applications of biopolymers, such as chitin, gelatin, pullulan, and chitosan, have greatly expanded in the biomedical field due to their non-toxic, antibacterial, biocompatible, hemostatic, and nonimmunogenic properties. Most of these polymers have been used in the form of foams, films, sponges, and fibers in drug carrier devices, skin tissue scaffolds, and wound dressings. Currently, special focus has been directed towards the fabrication of wound dressings based on synthesized hydrogels using natural polymers. The high-water retention capacity of hydrogels makes them potent candidates for wound dressings as they provide a moist environment in the wound and remove excess wound fluid, thereby accelerating wound healing. The incorporation of pullulan with different, naturally occurring polymers, such as chitosan, in wound dressings is currently attracting much attention due to the antimicrobial, antioxidant and nonimmunogenic properties. Despite the valuable properties of pullulan, it also has some limitations, such as poor mechanical properties and high cost. However, these properties are improved by blending it with different polymers. Additionally, more investigations are required to obtain pullulan derivatives with suitable properties in high quality wound dressings and tissue engineering applications. This review summarizes the properties and wound dressing applications of naturally occurring pullulan, then examines it in combination with other biocompatible polymers, such chitosan and gelatin, and discusses the facile approaches for oxidative modification of pullulan.
Collapse
Affiliation(s)
- Collins N. Elangwe
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Correspondence:
| | - Svetlana N. Morozkina
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Roman O. Olekhnovich
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| | - Victoria O. Polyakova
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 Saint-Petersburg, Russia
| | - Piotr K. Yablonskiy
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Mayya V. Uspenskaya
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
8
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Nicaraven-loaded electrospun wound dressings promote diabetic wound healing via proangiogenic and immunomodulatory functions: a preclinical investigation. Drug Deliv Transl Res 2023; 13:222-236. [PMID: 35648292 DOI: 10.1007/s13346-022-01176-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
The current study developed a biopolymer-based wound dressing by electrospinning of Nicaraven-loaded collagen solution. Firstly, collagen was dissolved in acetic acid, and then Nicaraven was added to the polymeric solution at three different concentrations of 2 w/w%, 4 w/w%, and 6 w/w%. The resulting solution was then electrospun. Various experiments were performed to characterize the produced wound dressings. In vitro studies showed that Nicaraven-loaded scaffolds were not toxic against L929 fibroblast cells and protected them against oxidative stress. Wound healing potential of different formulations of Nicaraven-loaded collagen wound dressings was studied in a rat model of the excisional diabetic wound. The study showed that the collagen/4% Nicaraven and collagen/6% Nicaraven wound dressings exhibited a significantly higher percentage of wound closure, the thickness of the epithelium, and collagen deposition compared with collagen/2% Nicaraven, collagen-only, and sterile gauze groups. Gene expression study showed that the developed wound dressings reduced the tissue expression levels of glutathione peroxidase, NFKβ, and matrix metalloproteinase 9 (MMP9) genes. In addition, in the wounds treated with collagen/4% Nicaraven and collagen/6% Nicaraven scaffolds, wound healing was associated with a higher tissue expression level of b-FGF, VEGF, and collagen type I genes. Overall, wound healing activity of collagen/4% Nicaraven and collagen/6% Nicaraven wound dressings was not significantly different. This study implies that collagen wound dressings incorporated with 4% and 6% Nicaraven can be considered a potential candidate to treat diabetic wounds in the clinic.
Collapse
|
10
|
Jintao Y. Idebenone-loaded wound dressings promote diabetic wound healing through downregulation of Il1b, Nfkb genes and upregulation of Fgf2 gene. Res Vet Sci 2022; 151:128-137. [PMID: 35901525 DOI: 10.1016/j.rvsc.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) are overproduced in diabetic wounds and retard the healing response. Considering the antioxidative function of idebenone, its exogenous administration may quench excessive ROS and promote diabetic wound healing. In the current study, idebenone was loaded into polyvinyl alcohol (PVA) /calcium alginate scaffolds at three different concentrations of 1 w/w%, 2 w/w%, and 3 w/w%. Various in vitro experiments were performed to characterize the developed wound dressings. Cell viability assay showed that scaffolds loaded with 1 w/w% idebenone had significantly better protection under oxidative stress and exhibited higher cell viability. Therefore, the dressings containing 1% drug was chosen to treat diabetic wounds in rat model. Wound healing assay showed that the dressings loaded with 1% drug had significantly higher rate of wound size reduction, collagen deposition, and epithelial thickness. Gene expression study showed that wound healing was accompanied by modulation of inflammatory response, protection against oxidative stress, and increasing angiogenesis-related genes. This preliminary research suggests that PVA/calcium alginate/1% idebenone scaffolds can be considered as a potential treatment modality to treat diabetic wounds in the clinic. However, more extensive studies at gene and protein expression levels are required to understand its exact mechanism of healing effects.
Collapse
Affiliation(s)
- Yao Jintao
- Wuhan Sinopec Hospital, Wuhan 430082, China.
| |
Collapse
|
11
|
Mi Z, Tofighi E. Lodoxamide-Loaded Nanofibrous Wound Dressings Promote Wound Healing via Downregulation of IL-1 β, NFK- β, and GPx Genes. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetic wounds are major clinical challenges which need immediate care to prevent complications such as limb amputation. There are a variety of treatment strategies available for the treatment of diabetic wounds among which wound dressings are the most effective and provide better
therapeutic outcome. Lodoxamide was loaded into gelatin scaffolds in order to develop a potential wound dressing material for diabetic wound healing. Electrospinning method was used for the fabrication of wound dressings containing three different concentrations of 1 w/w%, 3 w/w%, and 6 w/w%
of Lodoxamide. The developed scaffolds were studied regarding their various physicochemical and biological properties. In vitro study showed that the dressings containing 3% drug had significantly higher cell viability and cytoprotection under oxidative stress. Therefore, this formulation
was chosen for treating diabetic wounds in a rat model of excisional diabetic wound. In vivo study showed that gelatin/3% Lodoxamide group had higher wound healing compared with other experimental groups. Gene expression studies showed that the wounds treated with drug-delivering wound
dressings showed significantly lower tissue expression level of glutathione peroxidase gene, IL-1β gene, and NFK-β gene.
Collapse
Affiliation(s)
- Zengfa Mi
- Department of Burn and Plastic Surgery, The Third Hospital of Xiamen, Xiamen, 361000, China
| | - Ehsan Tofighi
- Department of Nanomedicine, Shiraz University of Medical Sciences, Shiraz, 36590001, Iran
| |
Collapse
|
12
|
Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int J Mol Sci 2022; 23:ijms231810519. [PMID: 36142432 PMCID: PMC9502833 DOI: 10.3390/ijms231810519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapeutic modalities to treat urethral strictures are associated with several challenges and shortcomings. Therefore, significant strides have been made to develop strategies with minimal side effects and the highest therapeutic potential. In this framework, electrospun scaffolds incorporated with various cells or bioactive agents have provided promising vistas to repair urethral defects. Due to the biomimetic nature of these constructs, they can efficiently mimic the native cells’ niches and provide essential microenvironmental cues for the safe transplantation of multiple cell types. Furthermore, these scaffolds are versatile platforms for delivering various drug molecules, growth factors, and nucleic acids. This review discusses the recent progress, applications, and challenges of electrospun scaffolds to deliver cells or bioactive agents during the urethral defect repair process. First, the current status of electrospinning in urethral tissue engineering is presented. Then, the principles of electrospinning in drug and cell delivery applications are reviewed. Finally, the recent preclinical studies are summarized and the current challenges are discussed.
Collapse
|
13
|
Zhou Z, Zhang X, Xu L, Lu H, Chen Y, Wu C, Hu P. A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing. Int J Biol Macromol 2022; 220:326-336. [PMID: 35981678 DOI: 10.1016/j.ijbiomac.2022.08.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Traditional wound dressings are not able to provide ideal environment for diabetic wounds surface thus hampered the regrowth of fresh tissues. In this study, we designed a novel in situ forming hydrogel and used it as wound dressing material. Carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA) were selected to construct a pH-responsive and self-healing hydrogel system via Schiff base reaction. Taurine (Tau) with anti-inflammatory property was loaded in the hydrogel through the aforementioned reaction. Under the slightly acidic environment of the diabetic wound site, a responsive release of taurine molecules speeded up the transfer of the taurine into the wound. The physiochemical properties of the prepared CMCS-OHA-Tau hydrogel were characterized. The CMCS-OHA-Tau hydrogel showed good biocompatibility, enhancement of cell migration and inhibited production of inflammatory cytokines.Subsequently, the hydrogel was applied on the wounds of diabetic rats and its boosted efficacy for wound recovery was confirmed.
Collapse
Affiliation(s)
- Ziqiang Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Lijun Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Huangjie Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Yuying Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
14
|
Dhania S, Bernela M, Rani R, Parsad M, Grewal S, Kumari S, Thakur R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol 2022; 208:243-259. [PMID: 35278518 DOI: 10.1016/j.ijbiomac.2022.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Our body is built to heal from inside out naturally but wide-ranging medical conditions necessitate the need for artificial assistance, and therefore, something that can assist the body to heal wounds and damaged tissues quickly and efficiently is of utmost importance. Tissue engineering technology helps to regenerate new tissue to replace the diseased or injured one. The technology uses biodegradable porous three-dimensional scaffolds for mimicking the structure and functions of the natural extracellular matrix. The material and design of scaffolds are critical areas of biomaterial research. Biomaterial-based three-dimensional structures have been the most promising material to serve as scaffolds for seeding cells, both in vivo and in vitro. One such material is polyhydroxyalkanoates (PHAs) which are thermoplastic biopolyesters that are highly suitable for this purpose due to their enhanced biocompatibility, biodegradability, thermo-processability, diverse mechanical properties, non-toxicity and natural origin. Moreover, they have tremendous possibilities of customization through biological physical and chemical modification as well as blending with other materials. They are being used for several tissue engineering applications such as bone graft substitute, cardiovascular patches, stents, for nerve repair and in implantology as valves and sutures. The present review overviews usage of a multitude of PHA-based biomaterials for a wide range of tissue engineering applications, based on their properties suitable for the specific applications.
Collapse
Affiliation(s)
- Sunena Dhania
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Minakshi Parsad
- Department of Animal Biotechnology, LUVAS, Hisar 125001, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Santosh Kumari
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Rajesh Thakur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
15
|
Lei L, Huang W, Liu K, Liu X, Dai M, Liu Z, Zhiao Y. Trilazad mesylate-loaded electrospun cellulose acetate nanofibrous wound dressings promote diabetic wound healing by modulation of immune response and protection against oxidative damage. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Li T, Sun M, Wu S. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:784. [PMID: 35269272 PMCID: PMC8911957 DOI: 10.3390/nano12050784] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
Electrospun nanofiber materials have been considered as advanced dressing candidates in the perspective of wound healing and skin regeneration, originated from their high porosity and permeability to air and moisture, effective barrier performance of external pathogens, and fantastic extracellular matrix (ECM) fibril mimicking property. Gelatin is one of the most important natural biomaterials for the design and construction of electrospun nanofiber-based dressings, due to its excellent biocompatibility and biodegradability, and great exudate-absorbing capacity. Various crosslinking approaches including physical, chemical, and biological methods have been introduced to improve the mechanical stability of electrospun gelatin-based nanofiber mats. Some innovative electrospinning strategies, including blend electrospinning, emulsion electrospinning, and coaxial electrospinning, have been explored to improve the mechanical, physicochemical, and biological properties of gelatin-based nanofiber mats. Moreover, numerous bioactive components and therapeutic agents have been utilized to impart the electrospun gelatin-based nanofiber dressing materials with multiple functions, such as antimicrobial, anti-inflammation, antioxidation, hemostatic, and vascularization, as well as other healing-promoting capacities. Noticeably, electrospun gelatin-based nanofiber mats integrated with specific functions have been fabricated to treat some hard-healing wound types containing burn and diabetic wounds. This work provides a detailed review of electrospun gelatin-based nanofiber dressing materials without or with therapeutic agents for wound healing and skin regeneration applications.
Collapse
Affiliation(s)
| | | | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (T.L.); (M.S.)
| |
Collapse
|
17
|
Chen W, Li X, Zeng L, Pan H, Liu Z. Allicin-loaded chitosan/polyvinyl alcohol scaffolds as a potential wound dressing material to treat diabetic wounds: An in vitro and in vivo study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers (Basel) 2021; 13:2959. [PMID: 34502997 PMCID: PMC8434607 DOI: 10.3390/polym13172959] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa; (S.P.N.); (K.N.); (S.A.)
| |
Collapse
|
19
|
Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13132104. [PMID: 34206747 PMCID: PMC8271691 DOI: 10.3390/polym13132104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.
Collapse
|
20
|
Liu Y, Li T, Han Y, Li F, Liu Y. Recent development of electrospun wound dressing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2020.100247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Human amniotic membrane as a delivery vehicle for stem cell-based therapies. Life Sci 2021; 272:119157. [PMID: 33524418 DOI: 10.1016/j.lfs.2021.119157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy is known as a regenerative approach for a variety of diseases and tissue injuries. These cells exert their therapeutic effects through paracrine secretions namely extracellular vesicles. To achieve higher therapeutic potential, a variety of delivery routes have been tested in clinical and preclinical studies. Direct cell injection, intra-venous administration, and intra-arterial infusion are widely used methods of stem cells delivery but these methods are associated with several complications. As one of the most popular biological delivery systems, amniotic membrane has been widely utilized to support cell proliferation and differentiation therefore facilitating tissue regeneration without endangering the stem cells' viability. It is composed of several extracellular matrix components and growth factors. Due to these characteristics, amniotic membrane can mimic the stem cell's niche and can be an ideal carrier for stem cell transplantation. Here, we provide an overview of the recent progress, challenges, and future perspectives in the use of amniotic membrane as a delivery platform for stem cells.
Collapse
|
22
|
Farnaz Fazlalizadeh, Massoumi B, Banaei A, Jaymand M. A Thermal-Responsive Y-Shaped Miktoarm Amphiphilic Block Copolymer Composed of Poly(ε-caprolactone) and Poly(N-isopropylacrylamide) as a Nano-micellar Carrier for Anti-cancer Drugs. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420050061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Guo X, Liu Y, Bera H, Zhang H, Chen Y, Cun D, Foderà V, Yang M. α-Lactalbumin-Based Nanofiber Dressings Improve Burn Wound Healing and Reduce Scarring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45702-45713. [PMID: 32667794 DOI: 10.1021/acsami.0c05175] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Skin wound especially burn injury is a major threat for public health. One of the pursuits in the current wound healing research is to identify new promising biological materials, which can not only promote tissue repair but also reduce scar formation. In this current study, the potentials of α-lactalbumin (ALA), a tryptophan-rich dietary protein acting as a precursor of neurotransmitter serotonin, to promote the burn wound healing and reduce the scar formation were investigated. The ALA was initially electrospun with polycaprolactone (PCL) to accomplish electrospun nanofibrous mats (ENMs), subsequently assessed for their physicochemical attributes and wound healing efficiency on a burn rat model, and then their healing mechanisms at cellular and molecular levels were explored. The results showed that ALA and PCL were physicochemically compatible in ENMs. The average diameter of various nanofibers was within 183-344 nm. Their wettability and mechanical properties could be readily modulated by adjusting the mass ratios of ALA and PCL from 1/9 to 1/2. The selected ENMs exhibited negligible cytotoxicity and satisfactory adhesion to fibroblasts and promoting the proliferation of the fibroblasts. As compared to pristine PCL based ENMs, the composite scaffolds could accelerate the wound healing process and exhibit effects comparable to a marketed wound dressing over 16 days. Moreover, the ALA/PCL based ENMs could increase the synthesis of type I collagen and decrease the expression of α-smooth muscle actin, conferring that the novel wound dressings could reduce the formation of scars. Collectively, this study demonstrates that the ALA is a promising biological material and could promote the regeneration of burn skins with reduced scar formation, when being loaded on ultrafine fibrous scaffolds, mimicking the structure of the natural extra cellular matrix.
Collapse
Affiliation(s)
- Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Hu W, Li Z, Ren L, Zhao Y, Yuan X. Endowing antibacterial ability to poly(ε-caprolactone) by blending with cationic − zwitterionic copolymers for biomedical purposes. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1626392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wenhong Hu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Zhenguang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
25
|
A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Sci Rep 2020; 10:13366. [PMID: 32770114 PMCID: PMC7414882 DOI: 10.1038/s41598-020-70155-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 01/13/2023] Open
Abstract
The focus of the current study was to develop a functional and bioactive scaffold through the combination of 3D polylactic acid (PLA)/polycaprolactone (PCL) with gelatin nanofibers (GNFs) and Taurine (Tau) for bone defect regeneration. GNFs were fabricated via electrospinning dispersed in PLA/PCL polymer solution, Tau with different concentrations was added, and the polymer solution converted into a 3D and porous scaffold via the thermally-induced phase separation technique. The characterization results showed that the scaffolds have interconnected pores with the porosity of up to 90%. Moreover, Tau increased the wettability and weight loss rate, while compromised the compressive strengths. The scaffolds were hemo- and cytocompatible and supported cell viability and proliferation. The in vivo studies showed that the defects treated with scaffolds filled with new bone. The computed tomography (CT) imaging and histopathological observation revealed that the PLA/PCL/Gel/Tau 10% provided the highest new bone formation, angiogenesis, and woven bone among the treatment groups. Our finding illustrated that the fabricated scaffold was able to regenerate bone within the defect and can be considered as the effective scaffold for bone tissue engineering application.
Collapse
|
26
|
Wang L, You X, Dai C, Tong T, Wu J. Hemostatic nanotechnologies for external and internal hemorrhage management. Biomater Sci 2020; 8:4396-4412. [PMID: 32658944 DOI: 10.1039/d0bm00781a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An uncontrolled hemorrhage can easily lead to death during surgery and military operations. Despite the significant advances in hemostatic research, there is still an urgent and increasing need for safer and more effective hemostatic materials. Recently, nanotechnologies have been receiving increasing interest owing to their unique advantages and have been propelling the developement of hemostatic materials. This review summarizes the fundamentals of hemostasis and emphasizes the recent developments regarding hemorrhage-related hemostatic nanotechnologies. In terms of external accessible hemorrhage management, natural and synthetic polymers and inorganic components that have been used in traditional hemostats provide novel nanoscale solutions. Regarding internal noncompressible hemorrhage management, current research endeavors are dedicated to the development of substitutes for blood components, and nanoformulated hemostatic drugs. This review also briefly discusses the main and persistent problems of hemostatic nanomaterials, including safety concerns and clinical translation challenges. This review is hoped to provide critical insight into hemostatic nanomaterial development.
Collapse
Affiliation(s)
- Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | | | |
Collapse
|
27
|
Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H, Alam M, Ai A, Derakhshankhah H, Allahyari Z, Goodarzi A, Salehi M. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 2020; 10:8312. [PMID: 32433566 PMCID: PMC7239895 DOI: 10.1038/s41598-020-65268-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Functional wound dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun mat loaded with berberine (Beri) as the DFU-specific wound dressing. The wound healing efficacy of the fabricated dressings was evaluated in streptozotocin-induced diabetic rats. The results demonstrated an average nanofiber diameter of 502 ± 150 nm, and the tensile strength, contact angle, porosity, water vapor permeability and water uptake ratio of CA/Gel nanofibers were around 2.83 ± 0.08 MPa, 58.07 ± 2.35°, 78.17 ± 1.04%, 11.23 ± 1.05 mg/cm2/hr, and 12.78 ± 0.32%, respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1°, 76.17 ± 0.76%, 10.17 ± 0.21 mg/cm2/hr, and 14.37 ± 0.42%, respectively. The antibacterial evaluations demonstrated that the dressings exhibited potent antibacterial activity. The collagen density of 88.8 ± 6.7% and the angiogenesis score of 19.8 ± 3.8 obtained in the animal studies indicate a proper wound healing. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activities. In conclusion, our results indicated that the prepared mat is a proper wound dressing for DFU management and treatment.
Collapse
Affiliation(s)
- Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Zamiri
- Department of Kinesiology and Health Science, York University, Ontario, Canada
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Armin Ai
- Dental student of scientific research center, faculty of dentistry, Tehran university of medical sciences, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Allahyari
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, USA
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
28
|
Ehterami A, Salehi M, Farzamfar S, Samadian H, Vaez A, Sahrapeyma H, Ghorbani S. A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-δ-lactone. Biomed Eng Lett 2020; 10:309-319. [PMID: 32431957 DOI: 10.1007/s13534-020-00155-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 11/24/2022] Open
Abstract
In the present study, we fabricated vitamin D3-loaded alginate hydrogel and assessed its wound healing capability in the animal model. The various concentrations of vitamin D3 were added to the pre-dissolved sodium alginate in deionized water and cross-linked by calcium carbonate in combination with d-glucono-δ-lactone. The microstructure, swelling behavior, weight loss, hemo- and cytocompatibility of the fabricated hydrogels were evaluated. In the last stage, the therapeutic efficacy of the prepared hydrogels was evaluated in the full-thickness dermal wound model. The scanning electron microscopy images showed that the prepared hydrogel was highly porous with the porosity of 89.2 ± 12.5% and contained the interconnected pores. Weight loss assessment showed that the prepared hydrogel is biodegradable with the weight loss percentage of about 89% in 14 days. The results showed that the prepared hydrogels were hemo- and cytocompatible. The animal study results implied that alginate hydrogel/3000 IU vitamin D3 group exhibited the highest wound closure present which was statistically significant than the control group (p < 0.05). Moreover, the histological examinations revealed that hydrogel containing 3000 IU vitamin D3 had the best performance and induced the highest re-epithelialization and granular tissue formation. All in all, this study suggests that alginate hydrogels with 3000 IU vitamin D3 can be exploited as a potential wound dressing in skin tissue engineering.
Collapse
Affiliation(s)
- Arian Ehterami
- 1Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Salehi
- 2Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,3Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Farzamfar
- 4Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Samadian
- 5Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Vaez
- 6Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Sahrapeyma
- 7Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Ghorbani
- 8Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,9Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Ahmad N, Tayyeb D, Ali I, K. Alruwaili N, Ahmad W, ur Rehman A, Khan AH, Iqbal MS. Development and Characterization of Hemicellulose-Based Films for Antibacterial Wound-Dressing Application. Polymers (Basel) 2020; 12:E548. [PMID: 32138203 PMCID: PMC7183054 DOI: 10.3390/polym12030548] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Hemicelluloses are biopolymers with versatile properties for biomedical applications. Herein, hemicellulose (arabinoxylan)-based antibacterial film dressings were prepared and characterized. Arabinoxylan was isolated from psyllium husk. Blank and gentamicin-loaded films were prepared by the solvent cast method using glycerol as the plasticizer. The appropriate composition of the films was obtained by varying the amounts of arabinoxylan, glycerol, and gentamicin. The films were found to be transparent, smooth, bubble-free, flexible, and easily peelable with 2% to 3% arabinoxylan. They had uniform thickness and swelled up to 60% of their initial size. The mechanical properties and water vapor transmission rate through the films were found to be suitable for wound-dressing application. Fourier transform infrared spectroscopy (FTIR) analysis confirmed drug-film compatibility. In an in vitro release study, more than 85% of the gentamicin was released from the films in 12 h. The antibacterial activities of the gentamicin-loaded films were found to be close to the standard gentamicin solution. The films were found to be cytocompatible in cell viability assay. These results suggested that hemicellulose-based films are promising materials for the dressing of infected wounds.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia
- Department of Pharmacy, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Danial Tayyeb
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakista
| | - Imran Ali
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakista
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang 11800, Malaysia
| | - Atta ur Rehman
- Department of Pharmacy, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Abdul Haleem Khan
- Department of Pharmacy, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Mohammad Saeed Iqbal
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakista
| |
Collapse
|
30
|
Sobhani M, Farzaei MH, Kiani S, Khodarahmi R. Immunomodulatory; Anti-inflammatory/antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahsa Sobhani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Zha F, Chen W, Zhang L, Yu D. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:519-548. [DOI: 10.1080/09205063.2019.1697170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fangwen Zha
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, PR China
| | - Lifeng Zhang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, NC A&T State University, Greensboro, NC, USA
| | - Demei Yu
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
32
|
Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Taghdiri Nooshabadi V, Farzamfar S, Akbariqomi M, Sanikhani NS, Absalan M, Tavoosidana G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. J Biomed Mater Res A 2019; 108:545-556. [PMID: 31702867 DOI: 10.1002/jbm.a.36835] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Wound healing is known as one of the most complicated biological processes for injured skin caused by surgical, trauma, burns, or diabetic diseases, which causes a nonfunctioning mass of fibrotic tissue. Recent reports have suggested that exosomes (EXOs) secreted by this type of stem cells may contribute to their paracrine effect. In this study, the EXOs were isolated from the supernatant of cultured adipose-derived stem cells (ADSCs) via ultracentrifugation and filtration. The EXO loaded in the alginate-based hydrogel was used as a bioactive scaffold to preserve the EXO in the wound site in the animal model. The physical and biochemical properties of EXO loaded Alg hydrogel were characterized and results proved that fabricated structure was biodegradable and biocompatible. This bioactive wound dressing technique has significantly improved wound closure, collagen synthesis, and vessel formation in the wound area. Results offer a new viewpoint and a cell-free therapeutic strategy, for wound healing through the application of the composite structure of EXO encapsulated in alginate hydrogel.
Collapse
Affiliation(s)
- Shilan Shafei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mehdi Khanmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh S Sanikhani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Salehi M, Niyakan M, Ehterami A, Haghi-Daredeh S, Nazarnezhad S, Abbaszadeh-Goudarzi G, Vaez A, Hashemi SF, Rezaei N, Mousavi SR. Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study. Biomed Eng Lett 2019; 10:149-161. [PMID: 32175135 DOI: 10.1007/s13534-019-00138-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/26/2022] Open
Abstract
In this study, cinnamon (cin) was loaded into poly(ε-caprolactone)/gelatin (PCL/Gel) nanofibrous matrices in order to fabricate an appropriate mat to improve wound healing. Mats were fabricated from PCL/COLL [1:1 (w/w)] solution with 1, 5 and 25% (w/v) of cinnamon. Prepared mats were characterized with regard to their microstructure, mechanical properties, porosity, surface wettability, water-uptake capacity, water vapor permeability, blood compatibility, microbial penetration and cellular response. The fabricated mats with and without cinnamon were used to treat the full-thickness excisional wounds in Wistar rats. The results indicated that the amount of cinnamon had a direct effect on porosity, mechanical properties, water uptake capacity, water contact angle, water vapor transmission rate and cell proliferation. In addition, the results of in vivo study indicated that after 14 days, the wounds which were treated with PCL/Gel 5%cin had better wound closure (98%) among other groups. Our results suggest that the cinnamon can be used as a suitable material for wound healing.
Collapse
Affiliation(s)
- Majid Salehi
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- 2Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Niyakan
- 3Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- 4Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Haghi-Daredeh
- 3Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Simin Nazarnezhad
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ghasem Abbaszadeh-Goudarzi
- 2Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- 5Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- 6Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Fatemeh Hashemi
- 3Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Reza Mousavi
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
34
|
Zheng C, Liu C, Chen H, Wang N, Liu X, Sun G, Qiao W. Effective wound dressing based on Poly (vinyl alcohol)/Dextran-aldehyde composite hydrogel. Int J Biol Macromol 2019; 132:1098-1105. [DOI: 10.1016/j.ijbiomac.2019.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
|
35
|
Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma H, Mirzaii M, Ghorbani S, Goodarzi A. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol 2018; 117:601-609. [DOI: 10.1016/j.ijbiomac.2018.05.184] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
|
36
|
Differentiation of Periodontal Ligament Stem Cells Into Osteoblasts on Hybrid Alginate/ Polyvinyl Alcohol/ Hydroxyapatite Nanofibrous Scaffolds. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/ans.74267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Farzamfar S, Naseri-Nosar M, Sahrapeyma H, Ehterami A, Goodarzi A, Rahmati M, Ahmadi Lakalayeh G, Ghorbani S, Vaez A, Salehi M. Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1466133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Naseri-Nosar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Sahrapeyma
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Arian Ehterami
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Rahmati
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Gholamreza Ahmadi Lakalayeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghorbani
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
38
|
Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, Goodarzi A, Ghorbani S. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:964-974. [DOI: 10.1080/21691401.2018.1439842] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hadi Samadian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Sahrapeyma
- Department of Biomaterial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghorbani
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|