1
|
Dayisoylu KS, Akboğa Z, Doğan C, Kaya E, Akgul Y, Doğan N, Eticha AK. Rapid fabrication of micro-nanofibers from grapevine leaf extract and gelatine via electroblowing: A novel approach for edible active food packaging. Int J Biol Macromol 2023; 253:127309. [PMID: 37827422 DOI: 10.1016/j.ijbiomac.2023.127309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
The objective of this study was to develop novel micro-nanofibers for food packaging using grapevine extract (GLP) and gelatine using electroblowing technique. The identified components of GLP were dominated by the flavone group phenolics, as analyzed by LC-MS/MS. SBS was used to fabricate gelatine micro-nanofiber mats loaded with three different concentrations of GLP, which were subsequently cross-linked. The micro-nanofibers were characterized by their morphology, chemistry, thermal properties, and bioactivity. The in-vitro antioxidant and antimicrobial effects of the nanofiber mats were determined using various methods, which showed an increase in effectiveness with increasing GLP concentration. The in-situ assessment, where the nanofibers were applied to cheese, also showed a consistent improvement in shelf life with the use of GLP-loaded gelatin electroblown fibers.
Collapse
Affiliation(s)
- Kenan Sinan Dayisoylu
- Department of Food Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Zişan Akboğa
- Department of Food Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Cemhan Doğan
- Department of Food Technology, Bogazliyan Vocational School, Yozgat Bozok University, Yozgat, Turkey.
| | - Elife Kaya
- Department of Food Processing, Technical Sciences Vocational School, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkiye
| | - Yasin Akgul
- Iron and Steel Institute, Karabuk University, Karabuk, Turkey
| | - Nurcan Doğan
- Department of Food Technology, Bogazliyan Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Andinet Kumella Eticha
- School of Mechanical and Industrial Engineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia; Mechanical Engineering Department, Karabuk University, Karabuk, Turkey
| |
Collapse
|
2
|
Dwivedi K, Mandal AK, Afzal O, Altamimi ASA, Sahoo A, Alossaimi MA, Almalki WH, Alzahrani A, Barkat MA, Almeleebia TM, Mir Najib Ullah SN, Rahman M. Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Gels 2023; 9:671. [PMID: 37623126 PMCID: PMC10453850 DOI: 10.3390/gels9080671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Flavonoids are hydroxylated phenolic substances in vegetables, fruits, flowers, seeds, wine, tea, nuts, propolis, and honey. They belong to a versatile category of natural polyphenolic compounds. Their biological function depends on various factors such as their chemical structure, degree of hydroxylation, degree of polymerization conjugation, and substitutions. Flavonoids have gained considerable attention among researchers, as they show a wide range of pharmacological activities, including coronary heart disease prevention, antioxidative, hepatoprotective, anti-inflammatory, free-radical scavenging, anticancer, and anti-atherosclerotic activities. Plants synthesize flavonoid compounds in response to pathogen attacks, and these compounds exhibit potent antimicrobial (antibacterial, antifungal, and antiviral) activity against a wide range of pathogenic microorganisms. However, certain antibacterial flavonoids have the ability to selectively target the cell wall of bacteria and inhibit virulence factors, including biofilm formation. Moreover, some flavonoids are known to reverse antibiotic resistance and enhance the efficacy of existing antibiotic drugs. However, due to their poor solubility in water, flavonoids have limited oral bioavailability. They are quickly metabolized in the gastrointestinal region, which limits their ability to prevent and treat various disorders. The integration of flavonoids into nanomedicine constitutes a viable strategy for achieving efficient cutaneous delivery owing to their favorable encapsulation capacity and diminished toxicity. The utilization of nanoparticles or nanoformulations facilitates drug delivery by targeting the drug to the specific site of action and exhibits excellent physicochemical stability.
Collapse
Affiliation(s)
- Khusbu Dwivedi
- Department of Pharmaceutics, Sambhunath Institute of Pharmacy Jhalwa, Prayagraj 211015, Uttar Pradesh, India;
| | - Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779, Saudi Arabia;
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin 39524, Saudi Arabia;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | | | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| |
Collapse
|
3
|
Khan AK, Kaleem S, Pervaiz F, Ali Sherazi ST, Khan SA, Khan FA, Jamshaid T, Umar MI, Hassan W, Ijaz M, Murtaza G. Antibacterial and wound healing potential of electrospun PVA/MMT nanofibers containing root extract of Berberis lycium. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Thamer BM, Al-Sabri AE, Almansob A, El-Newehy MH. Fabrication of Biohybrid Nanofibers by the Green Electrospinning Technique and Their Antibacterial Activity. ACS OMEGA 2022; 7:7311-7319. [PMID: 35252721 PMCID: PMC8892919 DOI: 10.1021/acsomega.1c07141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/07/2022] [Indexed: 05/10/2023]
Abstract
The development of bioactive polymer nanofiber sheets based on eco-friendly components is required to meet the needs of various medical applications as well as to preserve the environment. This study aimed to fabricate biohybrid nanofibers based on water-soluble polymers and aqueous extract of myrrh. The myrrh extract was incorporated into poly(vinyl alcohol)/tragacanth gum nanofiber mats (myrrh@PVA/TG) by the green electrospinning technique. Various characteristics of the prepared fibers such as morphology, fiber diameter distribution, crystallinity, and thermal stability were studied. The results confirmed that the morphology of biohybrid nanofibers was uniform without beads and tragacanth gum plays an important role in controlling the average diameter of fibers and the crystallinity. The antibacterial properties of the developed biohybrid nanofibers were investigated against common pathogens of Gram-positive and Gram-negative bacteria by the standard disc diffusion method. A significant antibacterial activity was observed toward bacterial strains after incorporation of aqueous myrrh extract into nanofibers, which increased on increasing the extract ratio. Due to their eco-friendly components and significant antibacterial activity, the prepared biohybrid nanofibers will open new avenues toward incorporating aqueous herbal extracts into degradable polymer fibers for use in many antibacterial applications.
Collapse
Affiliation(s)
- Badr M. Thamer
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed E. Al-Sabri
- Department
of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abobakr Almansob
- Department
of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed H. El-Newehy
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Paillot P, Farhat W, Becquart F, Jegat C, Taha M. Antimicrobial materials produced by incorporating copper acetate into ethylene-vinyl alcohol copolymer for its use in personal care and cosmetic packaging. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Currently, there is a great demand for functional materials with effective pathogen-killing properties. In this research, we describe the use of green technology “reactive extrusion” for the synthesis of potent antimicrobial materials based on Ethylene-vinyl alcohol copolymer (EVOH). Herein, the antimicrobial agent, copper (II) acetate was used without pretreatment and introduced into the EVOH matrices at high temperatures. The thermal reaction of copper (II) acetate within the EVOH matrices and their effect on the thermal and thermomechanical properties of the polymer were investigated in regards to their concentration. The physicochemical, thermal, and rheological features, as well as, metal salt release kinetics were reported. The antimicrobial agent had significant effects on the properties of the matrix. Results showed a reduction in the glass transition temperatures and storage modulus of the materials in response to the incorporation of copper (II) acetate. Finally, the antimicrobial activity of the products was studied and demonstrated a possibility to create antimicrobial materials in a one-step, solvent-free extrusion process.
Collapse
Affiliation(s)
- Pierrick Paillot
- Université de Lyon, INSA Lyon, Villeurbanne; UCBL, Villeurbanne; UJM, CNRS, IMP UMR 5223, Saint Etienne, France
| | - Wissam Farhat
- Université de Lyon, INSA Lyon, Villeurbanne; UCBL, Villeurbanne; UJM, CNRS, IMP UMR 5223, Saint Etienne, France
| | - Frédéric Becquart
- Université de Lyon, INSA Lyon, Villeurbanne; UCBL, Villeurbanne; UJM, CNRS, IMP UMR 5223, Saint Etienne, France
| | - Corinne Jegat
- Université de Lyon, INSA Lyon, Villeurbanne; UCBL, Villeurbanne; UJM, CNRS, IMP UMR 5223, Saint Etienne, France
| | - Mohamed Taha
- Université de Lyon, INSA Lyon, Villeurbanne; UCBL, Villeurbanne; UJM, CNRS, IMP UMR 5223, Saint Etienne, France
| |
Collapse
|
6
|
Salami MS, Bahrami G, Arkan E, Izadi Z, Miraghaee S, Samadian H. Co-electrospun nanofibrous mats loaded with bitter gourd (Momordica charantia) extract as the wound dressing materials: in vitro and in vivo study. BMC Complement Med Ther 2021; 21:111. [PMID: 33827547 PMCID: PMC8028699 DOI: 10.1186/s12906-021-03284-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interactive dressings are innovatively designed to interact with the wound surface and alter the wound environment to promote wound healing. In the current study, we integrated the physicochemical properties of Poly (caprolactone)/ Poly (vinyl alcohol)/Collagen (PCL/PVA/Col) nanofibers with the biological activities of Momordica charantia pulp extract to develop an efficient wound dressing. The electrospinning method was applied to fabricate the nanofibers, and the prepared wound dressings were thoroughly characterized. RESULTS SEM imaging showed that the nanofibers were uniform, straight, without any beds with a diameter in the range of 260 to 480 nm. Increasing the concentration of the extract increased the diameter of the nanofibers and also the wettability characteristics while reduced the ultimate tensile strength from 4.37 ± 0.90 MPa for PCL/PVA/Col to 1.62 ± 0.50 MPa for PCL/PVA/Col/Ex 10% (p < 0.05). The in vivo studies showed that the application of the wound dressings significantly enhanced the healing process and the highest wound closure, 94.01 ± 8.12%, was obtained by PCL/PVA/Col/Ex 10% nanofibers (p < 0.05). CONCLUSION The incorporation of the extract had no significant effects on nanofibers' porosity, water vapor permeability, and swelling characteristics. The in vitro evaluations showed that the fabricated nanofibers were hemocompatible, cytocompatible, and prevent bacterial penetration through the dressing. These findings implied that the PCL/PVA/Col/Ex nanofibers can be applied as the wound dressing materials.
Collapse
Affiliation(s)
- Mohammad Saeid Salami
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Hamid HA, Mutazah R, Yahya IH, Zeyohannes SS. Antioxidant and Antimicrobial Screening of Isolated Alkaloids from <i>Tinospora crispa</i>. MATERIALS SCIENCE FORUM 2021; 1025:163-168. [DOI: 10.4028/www.scientific.net/msf.1025.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The antioxidant capacity by DPPH radical scavenging and antimicrobial activity by disk diffusion and broth microdilution method of nine isolated alkaloids from T. crispa were evaluated. All isolated alkaloids had been divided into three groups which were aporphine alkaloids, N-formylannonaine (1), N-formylnornuciferine (2), magnoflorine (9), oxoaporphine alkaloids, lysicamine (3) and liriodenine (4); and protoberberine alkaloids, columbamine(6), dihydrodiscretamine (7) and 4,13-dihydroxy-2,8,9-trimethoxydibenzo [a,g]quinolizinium (8). Protoberberine alkaloids showed (IC50 > 500-800 μg/mL) radical scavenging activity while oxaporphine alkaloids inhibited the growth of the Gram-positive bacteria, Staphylococcus aureus (+) and Enterococcus faecalis (+).The antioxidant and antimicrobial properties of different compounds support documented traditional use of T. crispa in wound healing and treatment of rheumatic, diarrhoea, ulcers, itches and wounds. Results of the present biological activity investigation further points to the potential of this plant species as a good source of natural antioxidant and preservative in food industry.
Collapse
|
8
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
9
|
Thamer BM, Esmail GA, Al-Dhabi NA, Moydeen A. M, Arasu MV, Al-Enizi AM, El-Newehy MH. Fabrication of biohybrid electrospun nanofibers for the eradication of wound infection and drug-resistant pathogens. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|