1
|
Sugumaran V, Pavithra AJ, Purushothaman B, Subramanian B. Crucial Chemical Revelations in 45S5 Bioactive Glass via Sequential Precursor Integration Order. ACS APPLIED BIO MATERIALS 2024; 7:1600-1620. [PMID: 38349355 DOI: 10.1021/acsabm.3c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Among the wet chemical nanoparticle fabrication techniques, the sol-gel process happens through hydrolysis and subsequent polycondensation reactions. The bioactive glass known as the 45S5 SiO2-Na2O-CaO-P2O5 quaternary system has intricate chemistry, yet its advantages benefit the biomedical field on an enormous scale. The order in which the ethanol and TEOS inclusions are exchanged was investigated in this work because it has a direct impact on the early hydrolysis process. Another strategy involves adding phosphate species to the sol before gelation, modifying the network chemistry, and interpreting the findings. Adding phosphate species before gelation in the biomaterial (E-Si-P) resulted in the formation of hydroxyapatite and other calcium silicate phases at 800 °C. Swapping ethanol and TEOS biomaterials (E-Si and Si-E) resulted in the sodium-calcium silicate phase only. Si-E with strong Si-O-Si siloxane rings demonstrated superior mechanical stability, hemocompatibility, and bioactivity. This compact Si-O-Si decreased the surface area of Si-E. XPS spectra revealed that E-Si-P has the lowest Na 1s binding energy (BE) and the highest BE for Si 2p. More Si-O-/Si-OH groups formed by E-Si make the network weak and decrease the surface area and protein adsorption. These differences significantly influenced the morphology, surface properties, mechanical studies, and compatibility test. This study has further unraveled the protocol to design a biomaterial with mechanical stability and load-bearing ability. In addition, the appropriate protocol to yield the desired property-rich biomaterial with preserved bioactivity, mechanical stability, cytocompatibility, as well and surface porosity has been elaborated in detail.
Collapse
Affiliation(s)
- Vijayakumari Sugumaran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
| | - A J Pavithra
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamilnadu 603103, India
| | - Bargavi Purushothaman
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamilnadu 600077, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
| |
Collapse
|
2
|
Toloue EB, Mohammadalipour M, Mukherjee S, Karbasi S. Ultra-thin electrospun nanocomposite scaffold of poly (3-hydroxybutyrate)-chitosan/magnetic mesoporous bioactive glasses for bone tissue engineering applications. Int J Biol Macromol 2024; 254:127860. [PMID: 37939755 DOI: 10.1016/j.ijbiomac.2023.127860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Bioglass is widely used in skeletal tissue engineering due to its outstanding bioactive properties. In the present study, magnetic mesoporous bioglass (MMBG) synthesized through the sol-gel method was incorporated into poly(3-hydroxybutyrate)-chitosan (PHB-Cs) solution and the resulting electrospun nanocomposite scaffolds were investigated and compared with MMBG free scaffold. The addition of 10 wt% MMBG has an outstanding effect on producing ultra-thin electrospun nanocomposite fibers due to its magnetic content (diameter of ≃128 nm). This improvement led to better mechanical properties, including an increase in both tensile modulus (up to ≃229 MPa) and tensile strength (to ≃4.95 MPa). Although the inclusion of MMBG slightly decreased the surface roughness of the nanofibrous scaffold (RMS from ≃197 to 154 nm), it could improve the wettability (WCA from ≃54 to 44°). This achievement has the potential to bring an enhancement in biomineralization and biological response. These outputs, combined with the observed increase in human osteoblast MG-63 cell viability (≃53 % improvement) as measured by MTT assay, DAPI, and SEM indicate prefer cell behavior of this nanocomposite structure. Additionally, the qualitative improvement in Alizarin Red staining and the quantitative enhancement of ALP secretion, serve as further evidence of the PHB-Cs/MMBG ultrathin nanofibers potential in bone tissue engineering.
Collapse
Affiliation(s)
- Elahe Bahremandi Toloue
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Australia
| | - Mohammad Mohammadalipour
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Australia
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Pádua AS, Figueiredo L, Silva JC, Borges JP. Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Prog Biomater 2023; 12:137-153. [PMID: 36757613 PMCID: PMC10154456 DOI: 10.1007/s40204-023-00217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.
Collapse
Affiliation(s)
- Ana Sofia Pádua
- I3N/CENIMAT, Materials Science Department, NOVA School of Science and Technology, New University of Lisbon, Lisbon, Portugal
| | - Lígia Figueiredo
- Bioceramed S.A., Rua José Gomes Ferreira 1, Arm D, São Julião Do Tojal, 2660-360, Loures, Portugal
| | - Jorge Carvalho Silva
- I3N/CENIMAT, Physics Department, NOVA School of Science and Technology, New University of Lisbon, Caparica, Portugal.
| | - João Paulo Borges
- I3N/CENIMAT, Materials Science Department, NOVA School of Science and Technology, New University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
4
|
Biaxial electrospun nanofibers based on chitosan-poly (vinyl alcohol) and poly (Ɛ-caprolactone) modified with CeAlO 3 nanoparticles as potential wound dressing materials. Int J Biol Macromol 2022; 221:736-750. [PMID: 36099996 DOI: 10.1016/j.ijbiomac.2022.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
A two-nozzle electrospinning method was employed to fabricate hybrid nanofibers based on chitosan/polyvinyl alcohol (CS/PVA), with a ratio of 50:50, and poly (Ɛ-caprolactone) (PCL). CeAlO3 nanoparticles were synthesized by combustion method and utilized to improve the nanofiber's properties for wound dressing application. Cephalexin (CFX), as an antibiotic model, was also incorporated into the hydrophilic nanofibers. X-ray diffraction showed an increase in crystallinity when CeAlO3-NPs were present in the nanofibers. Water vapor transmission rates in the samples were calculated as 2201-2627 g m-2 day-1, all within the normal range of ideal wound dressings. Mechanical studies revealed a 43 % and 85 % increase in tensile strength and modulus when CeAlO3-NPs were incorporated. In vitro drug release tests were conducted to simulate drug release, and the neat fibers showed faster release than the modified fibers. The MTT assay and cell morphology experiments showed that CeAlO3-NPs did not affect the nanofiber's biocompatibility and fibroblast cells could better grow, differentiate and cover the prepared hybrid scaffold surface compared to the neat fibers. Taking the results of our study into account, we believe the prepared nanofibrous has the potential for use as a low-cost, effective wound dressing.
Collapse
|
5
|
Canales DA, Reyes F, Saavedra M, Peponi L, Leonés A, Palza H, Boccaccini AR, Grünewald A, Zapata PA. Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration. Int J Biol Macromol 2022; 210:324-336. [PMID: 35545139 DOI: 10.1016/j.ijbiomac.2022.05.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Electrospun fibers of poly (lactic acid) (PLA) containing 10 and 20 wt% of bioactive glass (n-BG) and magnesium oxide (n-MgO) nanoparticles of ca. 27 and 23 nm respectively, were prepared toward to application in bone tissue engineering. The addition of both nanoparticles into the PLA will produce a synergic effect increasing its bioactivity and antimicrobial behavior. Neat PLA scaffold and the composites with MgO showed an average fiber diameter of 1.7 ± 0.6 μm, PLA/n-BG and PLA/n-BG/n-MgO fibers presented a significant diameter increase reaching values of ca. 3.1 ± 0.8 μm. Young's modulus of the electrospun scaffolds was affected by the direct presence of the particle and scaffold morphologies. All the composites having n-BG presented bioactivity through the precipitation of hydroxyapatite structures on the surface. Although n-MgO did not add bioactivity to the PLA fibers, they were able to render antimicrobial characteristics reducing the S. aureus viability around 30%, although an effect on E. coli strain was not observed. PLA/n-BG nanocomposites did not display any significant antimicrobial behavior. The different composites increased the alkaline phosphatase (ALP) expression as compared with pure PLA barely affecting the cell viability, meaning a good osteoblastic phenotype expression capacity, with PLA/n-BG presenting the highest osteoblastic expression.
Collapse
Affiliation(s)
- Daniel A Canales
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Felipe Reyes
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Marcela Saavedra
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Humberto Palza
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Bavarian Polymer Institute, 91058 Erlangen, Germany
| | - Alina Grünewald
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Paula A Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
6
|
Nawaz T, Iqbal M, Khan BA, Nawaz A, Hussain T, Hosny KM, Abualsunun WA, Rizg WY. Development and Optimization of Acriflavine-Loaded Polycaprolactone Nanoparticles Using Box-Behnken Design for Burn Wound Healing Applications. Polymers (Basel) 2021; 14:polym14010101. [PMID: 35012125 PMCID: PMC8747314 DOI: 10.3390/polym14010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles are used increasingly for the treatment of different disorders, including burn wounds of the skin, due to their important role in wound healing. In this study, acriflavine-loaded poly (ε-caprolactone) nanoparticles (ACR-PCL-NPs) were prepared using a double-emulsion solvent evaporation method. All the formulations were prepared and optimized by using a Box-Behnken design. Formulations were evaluated for the effect of independent variables, i.e., poly (ε-caprolactone) (PCL) amount (X1), stirring speed of external phase (X2), and polyvinyl alcohol (PVA) concentration (X3), on the formulation-dependent variables (particle size, polydispersity index (PDI), and encapsulation efficiency) of ACR-PCL-NPs. The zeta potential, PDI, particle size, and encapsulation efficiency of optimized ACR-PCL-NPs were found to be -3.98 ± 1.58 mV, 0.270 ± 0.19, 469.2 ± 5.6 nm, and 71.9 ± 5.32%, respectively. The independent variables were found to be in excellent correlation with the dependent variables. The release of acriflavine from optimized ACR-PCL-NPs was in biphasic style with the initial burst release, followed by a slow release for up to 24 h of the in vitro study. Morphological studies of optimized ACR-PCL-NPs revealed the smooth surfaces and spherical shapes of the particles. Thermal and FTIR analyses revealed the drug-polymer compatibility of ACR-PCL-NPs. The drug-treated group showed significant re-epithelialization, as compared to the controlled group.
Collapse
Affiliation(s)
- Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Muhammad Iqbal
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
- Correspondence: or
| | - Barkat Ali Khan
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Talib Hussain
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| |
Collapse
|
7
|
3D Bioprinting of Polycaprolactone-Based Scaffolds for Pulp-Dentin Regeneration: Investigation of Physicochemical and Biological Behavior. Polymers (Basel) 2021; 13:polym13244442. [PMID: 34960993 PMCID: PMC8707254 DOI: 10.3390/polym13244442] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, two structurally different scaffolds, a polycaprolactone (PCL)/45S5 Bioglass (BG) composite and PCL/hyaluronic acid (HyA) were fabricated by 3D printing technology and were evaluated for the regeneration of dentin and pulp tissues, respectively. Their physicochemical characterization was performed by field emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, and compressive strength tests. The results indicated that the presence of BG in the PCL/BG scaffolds promoted the mechanical properties, surface roughness, and bioactivity. Besides, a surface treatment of the PCL scaffold with HyA considerably increased the hydrophilicity of the scaffolds which led to an enhancement in cell adhesion. Furthermore, the gene expression results showed a significant increase in expression of odontogenic markers, e.g., dentin sialophosphoprotein (DSPP), osteocalcin (OCN), and dentin matrix protein 1 (DMP-1) in the presence of both PCL/BG and PCL/HyA scaffolds. Moreover, to examine the feasibility of the idea for pulp-dentin complex regeneration, a bilayer PCL/BG-PCL/HyA scaffold was successfully fabricated and characterized by FESEM. Based on these results, it can be concluded that PCL/BG and PCL/HyA scaffolds have great potential for promoting hDPSC adhesion and odontogenic differentiation.
Collapse
|
8
|
Sadeghinia Z, Emadi R, Shamoradi F. A study of the electrophoretic deposition of polycaprolactone-chitosan-bioglass nanocomposite coating on stainless steel (316L) substrates. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211063506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this research, bioglass nanoparticles were synthesized via sol-gel method and a polycaprolactone-chitosan-bioglass nanocomposite coating was formed on SS316L substrate using electrophoretic deposition method. Then, the effects of voltage and deposition time on morphology, thickness, roughness, and wettability of final coating were investigated. Finally, biocompatibility and toxicity of the coating were evaluated. The results showed that increase of both time and voltage enhanced the thickness, roughness, and wettability of coating. Also, increase of deposition time increased the agglomeration. Therefore, it can be concluded that voltage of 20 V and time of 10 min are suitable for the formation of a uniform agglomerate-free coating. The presence of bioglass nanoparticles also led to the increase of roughness and improvement of polycaprolactone hydrophobicity. The results also showed higher bioactivity in polycaprolactone-chitosan-1% bioglass nanocomposite coating sample. This sample had a roughness ( Ra) of 1.048 ± 0.037 μm and thickness of 2.54 ± 0.14 μm. In summary, the results indicated that coating of polycaprolactone-chitosan-bioglass nanocomposite on SS316L substrate could be a suitable surface treatment to increase its in vivo bioactivity and biocompatibility.
Collapse
Affiliation(s)
- Zahra Sadeghinia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Fatemeh Shamoradi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
9
|
Sahrapeyma H, Asefnejad A, Azami M, Sadroddiny E. Fabrication of fibrous poly (ɛ‐caprolactone) nano‐fibers containing cerium doped‐bioglasses nanoparticles encapsulated collagen. J Appl Polym Sci 2021. [DOI: 10.1002/app.51202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hamed Sahrapeyma
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Mahmoud Azami
- Department of Tissue Engineering School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Esmaeil Sadroddiny
- Medical Biotechnology Department School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Moradian E, Rabiee SM, Haghighipour N, Salimi-Kenari H. Fabrication and physicochemical characterization of a novel magnetic nanocomposite scaffold: Electromagnetic field effect on biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111222. [PMID: 32806234 DOI: 10.1016/j.msec.2020.111222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
In the current research, a novel poly(ε-caprolactone) nanofibrous composite scaffold including CZF-NPs1 (cobalt‑zinc ferrite nanoparticles) was investigated to study the physical, mechanical and biological properties of new magnetic nanofibrous materials and then to evaluate the effect of applied electromagnetic field on biological properties of these scaffolds. It was observed that the incorporation of CZF-NPs up to 3 wt.% leads to decrease in nanofibers' diameter to 466 nm. By raising the content of CZF-NPs, hydrophilicity and biodegradation of magnetic nanofibrous scaffolds improved significantly. In addition, the mechanical properties of nanofibers such as stress at break point was interestingly increased in the sample with 3 wt.% of CZF-NPs. The results of biocompatibility, cell adhesion and cell staining assays with L929 cells are much more improved in nanofibers embedded with CZF-NPs in the presence of external electromagnetic field (EMF). According to this study, magnetic nanofibrous scaffolds composed of PCL/CZF-NPs could be considered as a promising candidate to regenerate damaged tissues.
Collapse
Affiliation(s)
- Elmira Moradian
- Department of Engineering, Maziar University of Royan, Mazandaran, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | | | - Hamed Salimi-Kenari
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|