1
|
Wang M, Lin S, Mequanint K. Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells. Polymers (Basel) 2022; 14:polym14081555. [PMID: 35458303 PMCID: PMC9025042 DOI: 10.3390/polym14081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues.
Collapse
|
2
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater 2018; 7:175-205. [PMID: 30203125 PMCID: PMC6173682 DOI: 10.1007/s40204-018-0097-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/25/2018] [Indexed: 12/01/2022] Open
Abstract
Compared to bare-metal stents (BMSs), drug-eluting stents (DESs) have been regarded as a revolutionary change in coronary artery diseases (CADs). Releasing pharmaceutical agents from the stent surface was a promising progress in the realm of cardiovascular stents. Despite supreme advantages over BMSs, in-stent restenosis (ISR) and long-term safety of DESs are still deemed ongoing concerns over clinically application of DESs. The failure of DESs for long-term clinical use is associated with following factors including permanent polymeric coating materials, metallic stent platforms, non-optimal drug releasing condition, and factors that have recently been supposed as contributory factors such as degradation products of polymers, metal ions due to erosion and degradation of metals and their alloys utilizing in some stents as metal frameworks. Discovering the direct relation between stent materials and associating adverse effects is a complicated process, and yet it has not been resolved. For clinical success it is of significant importance to optimize DES design and explore novel strategies to overcome all problems including inflammatory response, delay endothelialization, and sub-acute stent thrombosis (ST) simultaneously. In this work, scientific reports are reviewed particularly focusing on recent advancements in DES design which covers both potential improvements of existing and recently novel prototype stent fabrications. Covering a wide range of information from the BMSs to recent advancement, this study mostly sheds light on DES's concepts, namely stent composition, drug release mechanism, and coating techniques. This review further reports different forms of DES including fully biodegradable DESs, shape-memory ones, and polymer-free DESs.
Collapse
Affiliation(s)
- Setareh Borhani
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Nanochemical Engineering, School of New Science and Technology, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| |
Collapse
|
4
|
Seo BB, Choi H, Koh JT, Song SC. Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2. J Control Release 2015; 209:67-76. [PMID: 25910579 DOI: 10.1016/j.jconrel.2015.04.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 11/17/2022]
Abstract
Localized and continuous osteogenic stimulation to defected sites is required for effective bone regeneration. Here, we suggest an injectable and sustained bone morphogenetic protein-2 (BMP-2) release system using thermosensitive polymeric nanoparticles bearing dual interacting forces with BMP-2. For sustained BMP-2 release, hydrophobic and ionic interactions were introduced to thermosensitive poly(phosphazene). Hydrophobic isoleucine ethyl ester and hydrophilic poly-ethylene glycol were mainly substituted to the poly(phosphazene) back bone for amphiphilicity and hydrophobic interaction with BMP-2. Carboxylic acid moiety was additionally substituted to the back bone for ionic interaction with BMP-2. These dual interacting polymeric nanoparticles (D-NPs) formed compact nanocomplexes with BMP-2. The aqueous solution of BMP-2/D-NP nanocomplexes was transformed to hydrogel when the temperature of the solution increased. Loaded BMP-2 was sustain-released for three weeks from the BMP-2/D-NP nanocomplex hydrogel. The extended BMP-2 exposure caused higher osteocalcin secretion in C2C12 cells. Significant bone generations were observed at the target site by single injection of BMP-2/D-NP nanocomplexes in vivo.
Collapse
Affiliation(s)
- Bo-Bae Seo
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul 130-650, Republic of Korea; Department of Biomolecular Science, University of Science and Technology (UST), Seoul 136-791, Republic of Korea
| | - Hyuck Choi
- Department of Pharmacology and Dental Therapeutics, and Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, and Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Soo-Chang Song
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul 130-650, Republic of Korea; Department of Biomolecular Science, University of Science and Technology (UST), Seoul 136-791, Republic of Korea.
| |
Collapse
|
5
|
Solimando A, Dessy A, Alderighi M, Altomare A, Chiellini F, Solaro R. Preparation and characterization of biodegradable amphiphilic polymers and nanoparticles with high protein-loading capacity. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514537729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiblock copolymers containing carboxyl groups in the side-chains and at the chain ends were prepared from ABA triblock copolymers of ε-caprolactone, or lactide (as A block), and ethylene glycol (as B block). ABAn multiblock copolymers were prepared after chain-end functionalization and chain extension with pyromellitic dianhydride. A series of polymers were synthesized by varying the poly(ethylene glycol) and polyester molecular weight and the chirality of the lactide. Nuclear magnetic resonance analysis was used to confirm free carboxyl groups in the polymer backbone and at the chain ends. Thermal analysis indicated that the presence of pyromellitic dianhydride residues interfered not only with the formation of crystalline phases but also with the thermal degradation of chain-extended polymers. The biocompatibility of these amphiphilic polymers as evaluated with mouse embryo fibroblasts was acceptable. Both the parent ABA triblock copolymers and the carboxylated polymers were processed into nanoparticles. Depending on the polymer structure and reaction conditions, a narrow size nanoparticle distribution from ~10 to 250 nm was obtained. The nanoparticles were loaded with 60%–90% albumin and released 80%–90% of the albumin absorbed. Overall, this system was found to be well suited for the preparation of high-capacity injectable protein drug delivery.
Collapse
Affiliation(s)
- Antonella Solimando
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alberto Dessy
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Michele Alderighi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Angelina Altomare
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Roberto Solaro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. J Control Release 2010; 147:359-67. [DOI: 10.1016/j.jconrel.2010.07.126] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 07/20/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022]
|
7
|
Zhang Q, Yan Y, Li S, Feng T. The synthesis and characterization of a novel biodegradable and electroactive polyphosphazene for nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2009.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Doxorubicin–polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials 2009; 30:4752-62. [DOI: 10.1016/j.biomaterials.2009.05.031] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 05/15/2009] [Indexed: 11/20/2022]
|
9
|
Yin L, Huang X, Tang X. Synthesis, characterization and hydrolytic degradation of linear and crosslinked poly[(glycino ethyl ester)(allyl amino)phosphazene]. Polym Degrad Stab 2007. [DOI: 10.1016/j.polymdegradstab.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Heyde M, Moens M, Van Vaeck L, Shakesheff KM, Davies MC, Schacht EH. Synthesis and Characterization of Novel Poly[(organo)phosphazenes] with Cell-Adhesive Side Groups. Biomacromolecules 2007; 8:1436-45. [PMID: 17391003 DOI: 10.1021/bm060926k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a need to develop new scaffold materials with controlled surface properties for tissue engineering applications. For that purpose novel biodegradable poly[(organo)phosphazenes] were synthesized. A cell-binding molecule, galactose, was introduced via a spacer, either 6-aminohexanol (AH) or poly(ethylene glycol) (PEG; M(w) = 3400). Some polymers were substituted with an additional PEG chain of different molecular weights (M(w) = 750 or 5000). The polyphosphazene derivatives were characterized by 1H NMR. T(g) and T(m) were determined using differential scanning calorimetry. A detailed surface analysis of the polymers using X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and dynamic contact angle (DCA) measurements was performed. Typical backbone and side chain fragments were detected by SIMS and confirmed the polymer composition. Compared to that of the reference polymer (having only amino acid ester side groups), an increased value of the specific ether carbon groups from PEG confirmed the enrichment of PEG at the surface of PEG-Gal polymers. However, the values were lower than expected. DCA studies showed that the galactose moieties were present at the surface after exposure to an aqueous environment. XPS results confirmed the similarity between experimental and theoretical values for the AH-Gal polymers. This indicated the presence of galactose moieties at the surface, which was confirmed by the DCA data because the contact angles were low compared to those of the other polymers.
Collapse
Affiliation(s)
- Mieke Heyde
- Polymer Chemistry and Biomaterials Research Group, Ghent University, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
In Vitro and In Vivo Characterization of Biodegradable Poly(organophosphazenes) for Biomedical Applications. J Inorg Organomet Polym Mater 2006. [DOI: 10.1007/s10904-006-9071-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
12
|
Pertici P, Vitulli G, Gleria M, Facchin G, Milani R, Bertani R. Metal-Containing Poly(Organophosphazenes). ACTA ACUST UNITED AC 2006. [DOI: 10.1002/masy.200650313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Seong JY, Jun YJ, Jeong B, Sohn YS. New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Cui Y, Zhao X, Tang X, Luo Y. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix. Biomaterials 2004; 25:451-7. [PMID: 14585693 DOI: 10.1016/s0142-9612(03)00532-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As biodegradable materials, linear polyphosphazenes undergo rapid hydrolysis degradation but exhibit poor mechanical properties. Blending with biodegradable polyesters or inorganic particles strengthen their mechanical properties but give rise to slower degradation rate. To balance the mechanical properties and the degradation rate, micro-crosslinked polyphosphazenes were synthesized in this study. Their glass transition temperatures, mechanical properties, and in vitro degradation behavior were investigated. 2-hydroxyethyl methacrylate (HEMA) was firstly attached to the side chain along with glycine ethyl ester to prepare co-substituted poly(organophosphazene) with pendant ethenyl substituents. The co-substituted poly(organophosphazene) was blended with HEMA or acrylic acid (AA) followed by a free radical polymerization to prepare micro-crosslinked poly(organophosphazenes). The resulting crosslinked polymers showed two separate glass transition temperatures depending on the HEMA or AA feed. Incorporation of crosslinking affected the mechanical properties positively. Crosslinked poly(organophosphazenes) showed an approximately 11-17 fold increase in terms of modulus of elasticity when compared to the linear counterpart. In vitro degradation tests indicated that HEMA-crosslinked polymers hydrolyzed at a retarded rate while AA-crosslinked polymers hydrolyzed at a moderate rate compared to linear polymers.
Collapse
Affiliation(s)
- Yanjun Cui
- School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
15
|
Gümüşderelioǧlu M, Gür A. Synthesis, characterization, in vitro degradation and cytotoxicity of poly[bis(ethyl 4-aminobutyro)phosphazene]. REACT FUNCT POLYM 2002. [DOI: 10.1016/s1381-5148(02)00081-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
|
17
|
Fan Y, Kobayashi M, Kise H. Synthesis and specific biodegradation of novel polyesteramides containing amino acid residues. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/pola.1109] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|