1
|
Hagimont E, Lourenco-Rodrigues MD, Chousterman BG, Yen-Potin F, Durand M, Kimmoun A. β3-Adrenergic receptor antagonism improves cardiac and vascular functions but did not modulate survival in a murine resuscitated septic shock model. Intensive Care Med Exp 2024; 12:118. [PMID: 39692952 DOI: 10.1186/s40635-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Recent findings suggest that β3-adrenergic receptors (β3-AR) could play a role in the hemodynamic regulation, but their function in septic shock remains unclear. This study investigates the modulation of β3-AR in an experimental murine model of resuscitated septic shock on in vivo hemodynamic, ex vivo vasoreactivity, inflammation and survival. METHOD Wild-type mice were used, undergoing cecal ligation and puncture (CLP) to induce septic shock, with SHAM as controls. Mice were treated with β3-AR agonist or antagonist three hours post-CLP, followed by resuscitation with fluids and antibiotics. Hemodynamic parameters were measured at 18 h following the surgery, and the expression of β-ARs in heart and aorta was assessed via immunostaining and western blot. Vascular reactivity was studied using myography, and inflammatory markers were analyzed through PCR and western blots. A 5-day survival study was conducted, documenting clinical severity scores and survival rates. RESULTS β3-AR was expressed in both endothelial and myocardial cells in healthy and septic mice. During septic shock model, β3-AR density on endothelial cells increased post-CLP, while β1- and β2-AR decreased or remained constant. β3-AR antagonist treatment improved hemodynamic parameters, increasing mean arterial pressure and cardiac index, unlike the agonist. Vascular reactivity to phenylephrine was enhanced in aortic rings from both β3-AR agonist and antagonist-treated mice. However, no significant differences in inducible NO synthase expression were observed among treated groups. Despite improved hemodynamic parameters with β3-AR antagonist treatment, survival rates in treated groups remained similar to CLP group. CONCLUSIONS In an experimental murine model of resuscitated septic shock, β3-AR is resistant to desensitization and its inhibition improves cardiac and vascular function without affecting the short-term survival.
Collapse
Affiliation(s)
| | | | - Benjamin-Glenn Chousterman
- APHP, CHU Lariboisière, Département d'anesthésiologie et Réanimation, Inserm, MASCOT Paris, Université Paris Cité, Paris, France
| | | | - Manon Durand
- Inserm U1116, DCAC, Université de Lorraine, Nancy, France
| | - Antoine Kimmoun
- Inserm U1116, DCAC, Université de Lorraine, Nancy, France.
- CHRU de Nancy, Service de Médecine Intensive et Réanimation Brabois, INSERM U116, F-CRIN-INI-CRCT, Université de Lorraine, Vandœuvre-Lès-Nancy, France.
| |
Collapse
|
2
|
Eraky AM, Yerramalla Y, Khan A, Mokhtar Y, Alamrosy M, Farag A, Wright A, Grounds M, Gregorich NM. Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature. Int J Mol Sci 2024; 25:8058. [PMID: 39125627 PMCID: PMC11311757 DOI: 10.3390/ijms25158058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The autonomic nervous system plays a key role in maintaining body hemostasis through both the sympathetic and parasympathetic nervous systems. Sympathetic overstimulation as a reflex to multiple pathologies, such as septic shock, brain injury, cardiogenic shock, and cardiac arrest, could be harmful and lead to autonomic and immunologic dysfunction. The continuous stimulation of the beta receptors on immune cells has an inhibitory effect on these cells and may lead to immunologic dysfunction through enhancing the production of anti-inflammatory cytokines, such as interleukin-10 (IL-10), and inhibiting the production of pro-inflammatory factors, such as interleukin-1B IL-1B and tissue necrotizing factor-alpha (TNF-alpha). Sympathetic overstimulation-induced autonomic dysfunction may also happen due to adrenergic receptor insensitivity or downregulation. Administering anti-adrenergic medication, such as beta-blockers, is a promising treatment to compensate against the undesired effects of adrenergic surge. Despite many misconceptions about beta-blockers, beta-blockers have shown a promising effect in decreasing mortality in patients with critical illness. In this review, we summarize the recently published articles that have discussed using beta-blockers as a promising treatment to decrease mortality in critically ill patients, such as patients with septic shock, traumatic brain injury, cardiogenic shock, acute decompensated heart failure, and electrical storm. We also discuss the potential pathophysiology of beta-blockers in various types of critical illness. More clinical trials are encouraged to evaluate the safety and effectiveness of beta-blockers in improving mortality among critically ill patients.
Collapse
Affiliation(s)
- Akram M. Eraky
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
- Medical Education Department, Kansas City University, Kansas City, MO 64106, USA
| | - Yashwanth Yerramalla
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Adnan Khan
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Yasser Mokhtar
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Mostafa Alamrosy
- Cardiology and Angiology Unit, Department of Clinical and Experimental Internal Medicine, Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt;
| | - Amr Farag
- Critical Care Medicine, Portsmouth University Hospital, Portsmouth PO6 3LY, UK;
| | - Alisha Wright
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
| | - Matthew Grounds
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
| | - Nicole M. Gregorich
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
| |
Collapse
|
3
|
Yavuz A, Küçük A, Ergörün Aİ, Dursun AD, Yiğman Z, Alkan M, Arslan M. Evaluation of the efficacy of silymarin and dexmedetomidine on kidney and lung tissue in the treatment of sepsis in rats with cecal perforation. Exp Ther Med 2024; 27:242. [PMID: 38655036 PMCID: PMC11036365 DOI: 10.3892/etm.2024.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 04/26/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome that develops in the host against microorganisms. This response develops away from the primary infection site and results in end-organ damage. The present study aimed to investigate the protective and therapeutic effects on lung and kidney tissue of silymarin (S) and dexmedetomidine (DEX) applied 1 h before and after sepsis induced by the cecal ligation and puncture (CLP) method in rats. A total of 62 rats was randomly divided into eight groups: i) Control (n=6); ii) cecal perforation (CLP; n=8); iii) S + CLP (n=8; S + CLP; S administered 1 h before CPL); iv) CLP + S (n=8; S administered 1 h after CLP); v) DEX + CLP (n=8; D + CLP; DEX administered 1 h before CLP); vi) CLP + D (n=8; DEX administered 1 h after CLP); vii) SD + CLP (n=8; S and DEX administered 1 h before CLP) and viii) CLP + SD (n=8; S and DEX administered 1 h after CLP). After the cecum filled with stool, it was tied with 3/0 silk under the ileocecal valve and the anterior surface of the cecum was punctured twice with an 18-gauge needle. A total of 100 mg/kg silymarin and 100 µg/kg DEX were administered intraperitoneally to the treatment groups. Lung and kidney tissue samples were collected to evaluate biochemical and histopathological parameters. In the histopathological examination, all parameters indicating kidney injury; interstitial edema, peritubular capillary dilatation, vacuolization, ablation of tubular epithelium from the basement membrane, loss of brush border in the proximal tubule epithelium, cell swelling and nuclear defragmentation; were increased in the CLP compared with the control group. Silymarin administration increased kidney damage, including ablation of tubular epithelium from the basement membrane, compared with that in the CLP group. DEX significantly reduced kidney damage compared with the CLP and silymarin groups. The co-administration of DEX + silymarin decreased kidney damage, although it was not as effective as DEX-alone. To conclude, intraperitoneal DEX ameliorated injury in CLP rats. DEX + silymarin partially ameliorated injury but silymarin administration increased damage. As a result, silymarin has a negative effects with this dosage and DEX has a protective effect. In the present study, it was determined that using the two drugs together had a greater therapeutic effect than silymarin and no differences in the effects were not observed any when the application times of the agents were changed.
Collapse
Affiliation(s)
- Aydin Yavuz
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Science University, Kutahya 43020, Turkey
| | - Aydan İremnur Ergörün
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Neuroscience and Neurotechnology Center of Excellence, Gazi University, Ankara 06510, Turkey
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Research Center, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
4
|
Uhrenholt S, Linér SM, Stokholm J, Christensen T, Bestle MH. Pupillary dilation velocity is reduced in intensive care unit patients with septic shock. Acta Anaesthesiol Scand 2024; 68:56-62. [PMID: 37722925 DOI: 10.1111/aas.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Septic shock is common in the intensive care unit (ICU). The pathophysiology is poorly understood but prolonged sympathetic activation leading to autonomic dysfunction may be involved. Pupillary light response (PLR) is a fast, inexpensive, noninvasive way to measure autonomic nervous system function. The aim of the study was to observe dilation velocity of the PLR (PLRdil.vel. ) in patients with and without septic shock and explore whether other factors influenced the possible association. We hypothesized that the presence of septic shock in intensive care patients is associated with changes in sympathetic autonomic tone, which can be observed as changes in PLRdil.vel. METHODS: In this prospective observational cohort study, we included 91 adult patients acutely admitted to a mixed ICU. The patients were followed for the development of septic shock until ICU discharge. PLRdil.vel. was measured with a portable pupillometer two times a day. We used linear mixed models to analyze for an association between PLRdil.vel and septic shock along with several covariables. RESULTS Ninety-one patients were enrolled and of these, 35 were in septic shock. Septic shock was associated with a slowed PLRdil.vel of 0.3 mm/s (95% confidence intervals [CI -0.4; -0.2]). CONCLUSIONS Septic shock may be associated with changes in sympathetic autonomic tone which is supported by the findings from this study that septic shock was associated with a slower dilation velocity in the pupillary light reflex. Further studies should examine if the pupillary dilation velocity may serve as surrogate marker for changes in sympathetic autonomic nervous system activity in intensive care patients in septic shock. If so, future interventional studies should test if use of the pupillary dilation velocity may be used for earlier detection of septic shock, which could mean earlier institution of treatment measures for this condition.
Collapse
Affiliation(s)
- Stine Uhrenholt
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Signe Maria Linér
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Stokholm
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Thomas Christensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Morten H Bestle
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
de Miranda AC, De Stefani FDC, Dal Vesco BC, Junior HC, Morello LG, Assreuy J, de Menezes IAC. Peripheral ischemic reserve in sepsis and septic shock as a new bedside prognostic enrichment tool: A Brazilian cohort study. PLoS One 2023; 18:e0288249. [PMID: 37406024 DOI: 10.1371/journal.pone.0288249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Microvascular dysfunctions are associated with poor prognosis in sepsis. However, the potential role of clinical assessment of peripheral ischemic microvascular reserve (PIMR), a parameter that characterizes the variation of peripheral perfusion index (PPI) after brief ischemia of the upper arm, as a tool to detect sepsis-induced microvascular dysfunction and for prognostic enrichment has not been established. To address this gap, this study investigated the association of high PIMR with mortality over time in patients with sepsis and its subgroups (with and without shock) and peripheral perfusion (capillary-refill time). This observational cohort study enrolled consecutive septic patients in four Intensive-care units. After fluid resuscitation, PIMR was evaluated using the oximetry-derived PPI and post-occlusive reactive hyperemia for two consecutive days in septic patients. Two hundred and twenty-six patients were included-117 (52%) in the low PIMR group and 109 (48%) in the high PIMR group. The study revealed differences in mortality between groups on the first day, which was higher in the high PIMR group (RR 1.25; 95% CI 1.00-1.55; p = 0.04) and maintained its prognostic significance after multivariate adjustment. Subsequently, this analysis was made for sepsis subgroups and showed significant differences in mortality only for the septic-shock subgroup, with was higher in the high PIMR group (RR 2.14; 95% CI 1.49-3.08; p = 0.01). The temporal ΔPPI peak values (%) analyses did not demonstrate maintenance of the predictive value over the first 48 h in either group (p > 0.05). A moderate positive correlation (r = 0.41) between ΔPPI peak (%) and capillary-refill time (s) was found within the first 24 hours of diagnosis (p < 0.001). In conclusion, detecting a high PIMR within 24 h appears to be a prognostic marker for mortality in sepsis. Furthermore, its potential as a prognostic enrichment tool seems to occur mainly in septic shock.
Collapse
Affiliation(s)
- Ana Carolina de Miranda
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Bruna Cassia Dal Vesco
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hipólito Carraro Junior
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
6
|
Carrara M, Antenucci P, Liu S, Kohler A, Langer R, Jakob SM, Ferrario M. Autonomic and circulatory alterations persist despite adequate resuscitation in a 5-day sepsis swine experiment. Sci Rep 2022; 12:19279. [PMID: 36369521 PMCID: PMC9652343 DOI: 10.1038/s41598-022-23516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Autonomic and vascular failures are common phenotypes of sepsis, typically characterized by tachycardia despite corrected hypotension/hypovolemia, vasopressor resistance, increased arterial stiffness and decreased peripheral vascular resistance. In a 5-day swine experiment of polymicrobial sepsis we aimed at characterizing arterial properties and autonomic mechanisms responsible for cardiovascular homeostasis regulation, with the final goal to verify whether the resuscitation therapy in agreement with standard guidelines was successful in restoring a physiological condition of hemodynamic profile, cardiovascular interactions and autonomic control. Twenty pigs were randomized to polymicrobial sepsis and protocol-based resuscitation or to prolonged mechanical ventilation and sedation without sepsis. The animals were studied at baseline, after sepsis development, and every 24 h during the 3-days resuscitation period. Beat-to-beat carotid blood pressure (BP), carotid blood flow, and central venous pressure were continuously recorded. The two-element Windkessel model was adopted to study carotid arterial compliance, systemic vascular resistance and characteristic time constant τ. Effective arterial elastance was calculated as a simple estimate of total arterial load. Cardiac baroreflex sensitivity (BRS) and low frequency (LF) spectral power of diastolic BP were computed to assess autonomic activity. Sepsis induced significant vascular and autonomic alterations, manifested as increased arterial stiffness, decreased vascular resistance and τ constant, reduced BRS and LF power, higher arterial afterload and elevated heart rate in septic pigs compared to sham animals. This compromised condition was persistent until the end of the experiment, despite achievement of recommended resuscitation goals by administered vasopressors and fluids. Vascular and autonomic alterations persist 3 days after goal-directed resuscitation in a clinically relevant sepsis model. We hypothesize that the addition of these variables to standard clinical markers may better profile patients' response to treatment and this could drive a more tailored therapy which could have a potential impact on long-term outcomes.
Collapse
Affiliation(s)
- Marta Carrara
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Pietro Antenucci
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Shengchen Liu
- Department of Intensive Care Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Kohler
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Ferrario
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
7
|
Low-Dose Propranolol Prevents Functional Decline in Catecholamine-Induced Acute Heart Failure in Rats. TOXICS 2022; 10:toxics10050238. [PMID: 35622651 PMCID: PMC9148026 DOI: 10.3390/toxics10050238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Severe hyper-catecholaminergic states likely cause heart failure and cardiac fibrosis. While previous studies demonstrated the effects of beta-blockade in experimental models of single-catecholamine excess states, the detailed benefits of beta-blockade in more realistic models of hyper-adrenergic states are less clearly understood. In this study, we examined different therapeutic dosages and the effects of propranolol in rats with hyper-acute catecholamine-induced heart failure, and subsequent cardiopulmonary changes. Rats (n = 41) underwent a 6 h infusion of epinephrine and norepinephrine alone, with additional low-dose (1 mg/kg) or high-dose propranolol (10 mg/kg) at hour 1. Cardiac and pulmonary tissues were examined after 6 h. Catecholamine-only groups had the lowest survival rate. Higher doses of propranolol (15 mg/kg) caused similarly low survival rates and were not further analyzed. All low-dose propranolol rats survived, with a modest survival improvement in the high-dose propranolol groups. Left ventricular (LV) systolic pressure and LV end-diastolic pressure improved maximally with low-dose propranolol. Cardiac immunohistochemistry revealed an LV upregulation of FGF-23 in the catecholamine groups, and this improved in low-dose propranolol groups. These results suggest catecholamine-induced heart failure initiates early pre-fibrotic pathways through FGF-23 upregulation. Low-dose propranolol exerted cardio-preventative effects through FGF-23 downregulation and hemodynamic-parameter improvement in our model of hyper-acute catecholamine-induced heart failure.
Collapse
|
8
|
Chen R, Sun Y, Lv J, Dou X, Dai M, Sun S, Lin Y. Effects of Dexmedetomidine on Immune Cells: A Narrative Review. Front Pharmacol 2022; 13:829951. [PMID: 35586059 PMCID: PMC9108424 DOI: 10.3389/fphar.2022.829951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
As we all know, dexmedetomidine (DEX), as a highly selective α2 adrenergic receptor agonist, exerts sedative, anti-anxiety and hypnotic effects by inhibiting the discharge of norepinephrine neurons in locus coeruleus and GABA-related hypnotic pathways. However, the role of DEX in anti-inflammatory and immune regulation has gradually attracted the attention of researchers in recent years. The α2 adrenergic receptor is one of the members of the adrenergic receptor family, which is widely present in a variety of immune cells and mediates the biological behavior of the inflammatory immune system. At present, there have been more and more studies on the effects of DEX on immune cells and inflammatory responses, but few studies have systematically explored the anti-inflammatory and immunomodulatory effects of DEX. Here, we comprehensively review the published human and animal studies related to DEX, summarize the effects of DEX on immune cells and its role in related diseases, and propose potential research direction.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Sun
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lv
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoke Dou
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shujun Sun, ; Yun Lin,
| | - Yun Lin
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shujun Sun, ; Yun Lin,
| |
Collapse
|
9
|
Lescroart M, Pequignot B, Kimmoun A, Klein T, Levy B. Beta-blockers in septic shock: What is new? JOURNAL OF INTENSIVE MEDICINE 2022; 2:150-155. [PMID: 36789018 PMCID: PMC9923987 DOI: 10.1016/j.jointm.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
The use of beta(β)-blockers during septic shock aimed at countering peripheral adrenergic stress may be justified by the early reduction in deleterious effects resulting from sympathetic overactivation, and could improve the prognosis of patients in septic shock. Animal studies have demonstrated either a maintenance or increase in cardiac output (CO) despite the decrease in heart rate (HR) associated with improved myocardial performance. The mechanism by which β-blockers alter hemodynamics in septic shock is debated; however, preclinical and clinical data show that β-blockers are safe when started at a low dose. Recent publications (2019-2021) on adrenergic β1 receptor antagonists used in septic shock indicate that esmolol and landiolol should not be used in the early phase. While there is no optimal timing for their administration, a minimum of 12 h after the initiation of vasopressor therapy in stabilized euvolemic patients is a reasonable option. Patients should have a normal cardiac function, although a slight depression is compatible with landiolol use under hemodynamic monitoring. Slow titration in patients who remain tachycardic is preferable to rapid titration. When used to decrease HR, landiolol is also effective in reducing the incidence of new arrhythmias. Results of a well-performed and well-powered randomized controlled trial (RCT) demonstrating a positive effect on survival - or at least on hard surrogates such as the incidence/duration of organ failure - are pending.
Collapse
Affiliation(s)
- Mickael Lescroart
- Service de Médecine Intensive et Réanimation Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, University Hospital of Nancy-Brabois, Rue du Morvan, Vandœuvre-les-Nancy 54511, France,INSERM U1116, Faculté de Médecine, Vandœuvre-les-Nancy 54511, France,Université de Lorraine, Nancy 54000, France
| | - Benjamin Pequignot
- Service de Médecine Intensive et Réanimation Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, University Hospital of Nancy-Brabois, Rue du Morvan, Vandœuvre-les-Nancy 54511, France,INSERM U1116, Faculté de Médecine, Vandœuvre-les-Nancy 54511, France,Université de Lorraine, Nancy 54000, France
| | - Antoine Kimmoun
- Service de Médecine Intensive et Réanimation Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, University Hospital of Nancy-Brabois, Rue du Morvan, Vandœuvre-les-Nancy 54511, France,INSERM U1116, Faculté de Médecine, Vandœuvre-les-Nancy 54511, France,Université de Lorraine, Nancy 54000, France
| | - Thomas Klein
- Service de Médecine Intensive et Réanimation Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, University Hospital of Nancy-Brabois, Rue du Morvan, Vandœuvre-les-Nancy 54511, France,INSERM U1116, Faculté de Médecine, Vandœuvre-les-Nancy 54511, France,Université de Lorraine, Nancy 54000, France
| | - Bruno Levy
- Service de Médecine Intensive et Réanimation Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, University Hospital of Nancy-Brabois, Rue du Morvan, Vandœuvre-les-Nancy 54511, France,INSERM U1116, Faculté de Médecine, Vandœuvre-les-Nancy 54511, France,Université de Lorraine, Nancy 54000, France,Corresponding author: Bruno Levy, Service de Médecine Intensive et Réanimation Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, University Hospital of Nancy-Brabois, Rue du Morvan, Vandœuvre-les-Nancy 54511, France.
| |
Collapse
|
10
|
The β1-Adrenergic Receptor Contributes to Sepsis-Induced Immunosuppression Through Modulation of Regulatory T-Cell Inhibitory Function. Crit Care Med 2022; 50:e707-e718. [DOI: 10.1097/ccm.0000000000005503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Lai CC, Chen CH, Wang YH, Wang CY, Wang HC. The impact of the overuse of short-acting β2-agonists on the risk of sepsis and septic shock. J Allergy Clin Immunol 2022; 150:75-81.e1. [DOI: 10.1016/j.jaci.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
|
12
|
Debnath S, Levy TJ, Bellehsen M, Schwartz RM, Barnaby DP, Zanos S, Volpe BT, Zanos TP. A method to quantify autonomic nervous system function in healthy, able-bodied individuals. Bioelectron Med 2021; 7:13. [PMID: 34446089 PMCID: PMC8394599 DOI: 10.1186/s42234-021-00075-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The autonomic nervous system (ANS) maintains physiological homeostasis in various organ systems via parasympathetic and sympathetic branches. ANS function is altered in common diffuse and focal conditions and heralds the beginning of environmental and disease stresses. Reliable, sensitive, and quantitative biomarkers, first defined in healthy participants, could discriminate among clinically useful changes in ANS function. This framework combines controlled autonomic testing with feature extraction during physiological responses. METHODS Twenty-one individuals were assessed in two morning and two afternoon sessions over two weeks. Each session included five standard clinical tests probing autonomic function: squat test, cold pressor test, diving reflex test, deep breathing, and Valsalva maneuver. Noninvasive sensors captured continuous electrocardiography, blood pressure, breathing, electrodermal activity, and pupil diameter. Heart rate, heart rate variability, mean arterial pressure, electrodermal activity, and pupil diameter responses to the perturbations were extracted, and averages across participants were computed. A template matching algorithm calculated scaling and stretching features that optimally fit the average to an individual response. These features were grouped based on test and modality to derive sympathetic and parasympathetic indices for this healthy population. RESULTS A significant positive correlation (p = 0.000377) was found between sympathetic amplitude response and body mass index. Additionally, longer duration and larger amplitude sympathetic and longer duration parasympathetic responses occurred in afternoon testing sessions; larger amplitude parasympathetic responses occurred in morning sessions. CONCLUSIONS These results demonstrate the robustness and sensitivity of an algorithmic approach to extract multimodal responses from standard tests. This novel method of quantifying ANS function can be used for early diagnosis, measurement of disease progression, or treatment evaluation. TRIAL REGISTRATION This study registered with Clinicaltrials.gov , identifier NCT04100486 . Registered September 24, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04100486 .
Collapse
Affiliation(s)
- Shubham Debnath
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Todd J Levy
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Mayer Bellehsen
- Department of Psychiatry, Unified Behavioral Health Center and World Trade Center Health Program, Northwell Health, Bay Shore, NY, USA
| | - Rebecca M Schwartz
- Department of Occupational Medicine, Epidemiology and Prevention, Northwell Health, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Center for Disaster Health, Trauma, and Resilience, New York, NY, USA
- Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Douglas P Barnaby
- Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Northwell Health, Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Bruce T Volpe
- Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Northwell Health, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| |
Collapse
|
13
|
The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann Intensive Care 2021; 11:80. [PMID: 33999297 PMCID: PMC8128952 DOI: 10.1186/s13613-021-00869-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
The autonomic nervous system (ANS) regulates the cardiovascular system. A growing body of experimental and clinical evidence confirms significant dysfunction of this regulation during sepsis and septic shock. Clinical guidelines do not currently include any evaluation of ANS function during the resuscitation phase of septic shock despite the fact that the severity and persistence of ANS dysfunction are correlated with worse clinical outcomes. In the critical care setting, the clinical use of ANS-related hemodynamic indices is currently limited to preliminary investigations trying to predict and anticipate imminent clinical deterioration. In this review, we discuss the evidence supporting the concept that, in septic shock, restoration of ANS-mediated control of the cardiovascular system or alleviation of the clinical consequences induced by its dysfunction (e.g., excessive tachycardia, etc.), may be an important therapeutic goal, in combination with traditional resuscitation targets. Recent studies, which have used standard and advanced monitoring methods and mathematical models to investigate the ANS-mediated mechanisms of physiological regulation, have shown the feasibility and importance of monitoring ANS hemodynamic indices at the bedside, based on the acquisition of simple signals, such as heart rate and arterial blood pressure fluctuations. During the early phase of septic shock, experimental and/or clinical studies have shown the efficacy of negative-chronotropic agents (i.e., beta-blockers or ivabradine) in controlling persistent tachycardia despite adequate resuscitation. Central α-2 agonists have been shown to prevent peripheral adrenergic receptor desensitization by reducing catecholamine exposure. Whether these new therapeutic approaches can safely improve clinical outcomes remains to be confirmed in larger clinical trials. New technological solutions are now available to non-invasively modulate ANS outflow, such as transcutaneous vagal stimulation, with initial pre-clinical studies showing promising results and paving the way for ANS modulation to be considered as a new potential therapeutic target in patients with septic shock.
Collapse
|
14
|
Dexmedetomidine: What's New for Pediatrics? A Narrative Review. J Clin Med 2020; 9:jcm9092724. [PMID: 32846947 PMCID: PMC7565844 DOI: 10.3390/jcm9092724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, despite the lack of approved pediatric labelling, dexmedetomidine’s (DEX) use has become more prevalent in pediatric clinical practice as well as in research trials. Its respiratory-sparing effects and bioavailability by various routes are only some of the valued features of DEX. In recent years the potential organ-protective effects of DEX, with the possibility for preserving neurocognitive function, has put it in the forefront of clinical and bench research. This comprehensive review focused on the pediatric literature but presents relevant, supporting adult and animal studies in order to detail the recent growing body of literature around the pharmacology, end-organ effects, organ-protective effects, alternative routes of administration, synergetic effects, and clinical applications, with considerations for the future.
Collapse
|
15
|
Poveda-Jaramillo R. Heart Dysfunction in Sepsis. J Cardiothorac Vasc Anesth 2020; 35:298-309. [PMID: 32807603 DOI: 10.1053/j.jvca.2020.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Cardiac involvement during sepsis frequently occurs. A series of molecules induces a set of changes at the cellular level that result in the malfunction of the myocardium. The understanding of these molecular alterations has simultaneously promoted the implementation of diagnostic strategies that are much more precise and allowed the advance of the therapeutics. The heart is a vital organ for survival. Its well-being ensures the adequate supply of essential elements for organs and tissues.
Collapse
|
16
|
Park HJ, Piao L, Seo EH, Lee SH, Kim SH. The effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Int J Med Sci 2020; 17:428-436. [PMID: 32174773 PMCID: PMC7053311 DOI: 10.7150/ijms.41899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: This study was designed to assess the effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Materials and Methods: The mice were divided into six groups: three intravenous anesthetic agents groups (dexmedetomidine, midazolam and propofol groups), and three corresponding control groups (CD, CM, and CP groups). The intravenous injections were administered once per day for 5 days. The immunity of mice was checked after the last intravenous injection. Histopathology and immunochemistry of liver and kidneys were evaluated. Cytokine levels in the blood was also checked. vs. evaluated with cytokine levels in the blood. Results: Cluster of differentiation (CD)4+ T cells were significantly less expressed in dexmedetomidine and propofol groups, compared with the corresponding control groups [34.08 ± 5.63% in the dexmedetomidine group vs. 59.74 ± 8.64% in the CD group, p < 0.05; 25.28 ± 7.28% in the propofol group vs. 61.12 ± 2.70% in the Cp group, p < 0.05]. Apoptosis of CD4+ T cells was increased significantly in dexmedetomidine and propofol groups, compared with the corresponding control groups. Histopathological findings of liver and kidneys did not show any specific differences of any of three intravenous anesthetic agents groups with their corresponding control groups, although immunohistochemical examination indicated significantly lower expression of Toll-like receptor-4 from liver and kidneys in dexmedetomidine and propofol groups. The cytokine levels were not different between the groups. Conclusion: Repetitive exposure to dexmedetomidine and propofol reduced the expression of CD4+ T cells but did not induce any significant liver or kidney injuries.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Liyun Piao
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Eun-Hye Seo
- BK21 plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| | - Seong-Hyop Kim
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea.,Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Wang K, Wu M, Xu J, Wu C, Zhang B, Wang G, Ma D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: systematic review and meta-analysis. Br J Anaesth 2019; 123:777-794. [DOI: 10.1016/j.bja.2019.07.027] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
|
18
|
Belletti A, Landoni G, Lomivorotov VV, Oriani A, Ajello S. Adrenergic Downregulation in Critical Care: Molecular Mechanisms and Therapeutic Evidence. J Cardiothorac Vasc Anesth 2019; 34:1023-1041. [PMID: 31839459 DOI: 10.1053/j.jvca.2019.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Catecholamines remain the mainstay of therapy for acute cardiovascular dysfunction. However, adrenergic receptors quickly undergo desensitization and downregulation after prolonged stimulation. Moreover, prolonged exposure to high circulating catecholamines levels is associated with several adverse effects on different organ systems. Unfortunately, in critically ill patients, adrenergic downregulation translates into progressive reduction of cardiovascular response to exogenous catecholamine administration, leading to refractory shock. Accordingly, there has been a growing interest in recent years toward use of noncatecholaminergic inotropes and vasopressors. Several studies investigating a wide variety of catecholamine-sparing strategies (eg, levosimendan, vasopressin, β-blockers, steroids, and use of mechanical circulatory support) have been published recently. Use of these agents was associated with improvement in hemodynamics and decreased catecholamine use but without a clear beneficial effect on major clinical outcomes. Accordingly, additional research is needed to define the optimal management of catecholamine-resistant shock.
Collapse
Affiliation(s)
- Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vladimir V Lomivorotov
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Alessandro Oriani
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ajello
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Increase of Perfusion Index During Vascular Occlusion Test is Paradoxically Associated With Higher Mortality in Septic Shock After Fluid Resuscitation: A Prospective Study. Shock 2019; 51:605-612. [DOI: 10.1097/shk.0000000000001217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Durand M, Louis H, Fritz C, Levy B, Kimmoun A. β-bloquants dans la prise en charge du choc septique. MEDECINE INTENSIVE REANIMATION 2019. [DOI: 10.3166/rea-2019-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Les adrénorécepteurs α et en particulier β sont les principales cibles de l’adrénaline et de la noradrénaline libérées par le système sympathique activé. Durant le choc septique, la dysautonomie est une stimulation prolongée à un haut niveau d’intensité du système nerveux sympathique à l’origine d’une altération de la contractilité, de la vasoréactivité et d’une immunodépression. Ainsi, l’administration précoce d’un traitement β-bloquant lors du choc septique pourrait pondérer les effets délétères de cette surstimulation sympathique. Néanmoins, si les preuves expérimentales sont en faveur de cette approche, l’accumulation des preuves cliniques reste encore insuffisante.
Collapse
|
21
|
van Loon LM, van der Hoeven JG, Lemson J. Hemodynamic response to β-blockers in severe sepsis and septic shock: A review of current literature. J Crit Care 2018; 50:138-143. [PMID: 30540967 DOI: 10.1016/j.jcrc.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
The administration of β-blockers in patients with sepsis is a trending topic in intensive care medicine since the landmark study by Morelli and colleagues, showing a striking decrease in 28-day mortality compared to standard care. While the available evidence suggests that the use of β-blockers in septic shock is safe, the effects on hemodynamics are controversial. In this paper, we review the effect of β-blockade in septic shock on hemodynamics from animal models to critically ill patients.
Collapse
Affiliation(s)
- Lex M van Loon
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands; Department of Critical Care Medicine (707), Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| | - Johannes G van der Hoeven
- Department of Critical Care Medicine (707), Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Joris Lemson
- Department of Critical Care Medicine (707), Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|