1
|
Burzava AL, Zuber A, Hayles A, Morel J, Bright R, Wood J, Palms D, Barker D, Brown T, Vasilev K. Platelet interaction and performance of antibacterial bioinspired nanostructures passivated with human plasma. Mater Today Bio 2024; 29:101236. [PMID: 39399241 PMCID: PMC11467677 DOI: 10.1016/j.mtbio.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
The ever-increasing ageing of the world population is demanding superior orthopedic devices. Issues such as implant infection, poor osseointegration, or chronic inflammation remain problematic to the lifespan and long-term efficacy of implants. Fabrication of materials with bioinspired nanostructures is one emerging antibacterial strategy to prevent implant infection, however their interactions with blood components, and whether they retain their bactericidal properties in an environment displaying a complex protein corona, remains largely unexplored. In the present study, titanium alloy, commercially pure and plasma-sprayed titania were hydrothermally etched, passivated with human native plasma to develop a protein corona, and then incubated with either Staphylococcus aureus, Pseudomonas aeruginosa or human platelets. Surface analysis was first used to characterize the topography, chemical composition or crystallinity of each material. Fluorescence staining and SEM were performed to evaluate the nanostructure bactericidal properties, as well as to study platelet attachment and morphology. Composition of platelet supernatant was studied using ELISA and flow cytometry. Overall, our study showed that the bioinspired nanostructured surfaces displayed both impressive antibacterial properties in a complex environment, and a superior blood biocompatibility profile in terms of platelet activation (particularly for titanium alloy). Additionally, the amount of pro-inflammatory cytokines released by platelets was found to be no different to that found in native plasma (background levels) and, in some cases, presented a more pro-healing profile with an increased secretion of factors such as TGF-β, PDGF-BB or BMP-2. The nanostructured surfaces performed equally, or better, than hydroxyapatite-coated titanium which is one of the current gold standards in orthopedics. Although further in vivo studies are required to validate these results, such bioinspired nanostructured surfaces certainly show promise to be safely applied to medical device surfaces used in orthopedics and other areas.
Collapse
Affiliation(s)
- Anouck L.S. Burzava
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- Laboratoire Softmat, Université de Toulouse, CNRS, UMR 5623, Université Toulouse III – Paul Sabatier, 31062, Toulouse, France
| | - Agnieszka Zuber
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Andrew Hayles
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - James Morel
- School of Chemical Engineering, UNSW Sydney, New South Wales, 2052, Australia
| | - Richard Bright
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Jonathan Wood
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Dennis Palms
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Dan Barker
- Corin Australia, Pymble, New South Wales, 2073, Australia
| | - Toby Brown
- Corin Australia, Pymble, New South Wales, 2073, Australia
| | - Krasimir Vasilev
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
2
|
Zhang Y, Zhang M, Hu X, Hao H, Quan C, Ren T, Gao H, Wang J. Engineering a porphyrin COFs encapsulated by hyaluronic acid tumor-targeted nanoplatform for sequential chemo-photodynamic multimodal tumor therapy. Int J Biol Macromol 2024; 279:135328. [PMID: 39242006 DOI: 10.1016/j.ijbiomac.2024.135328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Numerous barriers hinder the entry of drugs into cells, limiting the effectiveness of tumor pharmacotherapy. Effective penetration into tumor tissue and facilitated cellular uptake are crucial for the efficacy of nanotherapeutics. Photodynamic therapy (PDT) is a promising approach for tumor suppression. In this study, we developed a size-adjustable porphyrin-based covalent organic framework (COF), further modified with hyaluronic acid (HA), to sequentially deliver drugs for combined chemo-photodynamic tumor therapy. A larger COF (P-COF, approximately 500 nm) was loaded with the antifibrotic drug losartan (LST) to create LST/P-COF@HA (LCH), which accumulates at tumor sites. After injection, LCH releases LST, downregulating tumor extracellular matrix (ECM) component levels and decreasing collagen density, thus reducing tumor solid stress. Additionally, the reactive oxygen species (ROS) generated from LCH under 660 nm laser irradiation induce lipid peroxidation of cell membranes. Owing to its larger particle size, LCH primarily functions extracellularly, paving the way for subsequent treatments. Following intravenous administration, the smaller COF (p-COF, approximately 200 nm) loaded with doxorubicin (DOX) and modified with HA (DOX/p-COF@HA, DCH) readily enters cells in the altered microenvironment. Within tumor cells, ROS generated from DCH facilitates PDT, while the released DOX targets cancer cells via chemotherapy, triggered by disulfide bond cleavage in the presence of elevated glutathione (GSH) levels. This depletion of GSH further enhances the PDT effect. Leveraging the size-tunable properties of the porphyrin COF, this platform achieves a multifunctional delivery system that overcomes specific barriers at optimal times, leading to improved outcomes in chemo-photodynamic multimodal tumor therapy in vivo.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Han Hao
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Cuilu Quan
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Tiantian Ren
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan, Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064 Chengdu, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China.
| |
Collapse
|
3
|
Huang HH, Chen ZH, Nguyen DT, Tseng CM, Chen CS, Chang JH. Blood Coagulation on Titanium Dioxide Films with Various Crystal Structures on Titanium Implant Surfaces. Cells 2022; 11:cells11172623. [PMID: 36078030 PMCID: PMC9454428 DOI: 10.3390/cells11172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Titanium (Ti) is one of the most popular implant materials, and its surface titanium dioxide (TiO2) provides good biocompatibility. The coagulation of blood on Ti implants plays a key role in wound healing and cell growth at the implant site; however, researchers have yet to fully elucidate the mechanism underlying this process on TiO2. Methods: This study examined the means by which blood coagulation was affected by the crystal structure of TiO2 thin films (thickness < 50 nm), including anatase, rutile, and mixed anatase/rutile. The films were characterized in terms of roughness using an atomic force microscope, thickness using an X-ray photoelectron spectrometer, and crystal structure using transmission electron microscopy. The surface energy and dielectric constant of the surface films were measured using a contact angle goniometer and the parallel plate method, respectively. Blood coagulation properties (including clotting time, factor XII contact activation, fibrinogen adsorption, fibrin attachment, and platelet adhesion) were then assessed on the various test specimens. Results: All of the TiO2 films were similar in terms of surface roughness, thickness, and surface energy (hydrophilicity); however, the presence of rutile structures was associated with a higher dielectric constant, which induced the activation of factor XII, the formation of fibrin network, and platelet adhesion. Conclusions: This study provides detailed information related to the effects of TiO2 crystal structures on blood coagulation properties on Ti implant surfaces.
Collapse
Affiliation(s)
- Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Zhi-Hwa Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Diem Thuy Nguyen
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chuan-Ming Tseng
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chiang-Sang Chen
- Department of Orthopedics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Jean-Heng Chang
- Dental Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| |
Collapse
|
4
|
Jia Y, Zhang L, He B, Lin Y, Wang J, Li M. 8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111243. [DOI: 10.1016/j.msec.2020.111243] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
|
5
|
Klein M, Kuhn Y, Woelke E, Linde T, Ptock C, Kopp A, Bletek T, Schmitz‐Rode T, Steinseifer U, Arens J, Clauser JC. In vitro study on the hemocompatibility of plasma electrolytic oxidation coatings on titanium substrates. Artif Organs 2019; 44:419-427. [DOI: 10.1111/aor.13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Mario Klein
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Yasmin Kuhn
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Eva Woelke
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | | | | | | | | | - Thomas Schmitz‐Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash Institute of Medical Engineering Monash University Melbourne Australia
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Johanna C. Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| |
Collapse
|
6
|
Lin S, Li X, Wang K, Shang T, Zhou L, Zhang L, Wang J, Huang N. An Albumin Biopassive Polyallylamine Film with Improved Blood Compatibility for Metal Devices. Polymers (Basel) 2019; 11:E734. [PMID: 31018520 PMCID: PMC6523212 DOI: 10.3390/polym11040734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 11/17/2022] Open
Abstract
Nowadays, a variety of materials are employed to make numerous medical devices, including metals, polymers, ceramics, and others. Blood-contact devices are one of the major classes of these medical devices, and they have been widely applied in clinical settings. Blood-contact devices usually need to have good mechanical properties to maintain clinical performance. Metal materials are one desirable candidate to fabricate blood-contact devices due to their excellent mechanical properties and machinability, although the blood compatibility of existing blood-contact devices is better than other medical devices, such as artificial joints and artificial crystals. However, blood coagulation still occurs when these devices are used in clinical settings. Therefore, it is necessary to develop a new generation of blood-contact devices with fewer complications, and the key factor is to develop novel biomaterials with good blood compatibility. In this work, one albumin biopassive polyallylamine film was successfully established onto the 316L stainless steel (SS) surface. The polyallylamine film was prepared by plasma polymerization in the vacuum chamber, and then polyallylamine film was annealed at 150 °C for 1 h. The chemical compositions of the plasma polymerized polyallylamine film (PPAa) and the annealed polyallylamine film (HT-PPAa) were characterized by Fourier transform infrared spectrum (FTIR). Then, the wettability, surface topography, and thickness of the PPAa and HT-PPAa were also evaluated. HT-PPAa showed increased stability when compared with PPAa film. The major amino groups remained on the surface of HT-PPAa after annealing, indicating that this could be a good platform for numerous molecules' immobilization. Subsequently, the bovine serum albumin (BSA) was immobilized onto the HT-PPAa surface. The successful introduction of the BSA was confirmed by the FTIR and XPS detections. The blood compatibility of these modified films was evaluated by platelets adhesion and activation assays. The number of the platelets that adhered on BSA-modified HT-PPAa film was significantly decreased, and the activation degree of the adhered platelets was also decreased. These data revealed that the blood compatibility of the polyallylamine film was improved after BSA immobilized. This work provides a facile and effective approach to develop novel surface treatment for new-generation blood-contact devices with improved hemocompatibility.
Collapse
Affiliation(s)
- Shuang Lin
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Xin Li
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Kebing Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tengda Shang
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Lei Zhou
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Lu Zhang
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jin Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
7
|
Milleret V, Lienemann PS, Bauer S, Ehrbar M. Quantitative in vitro comparison of the thrombogenicity of commercial dental implants. Clin Implant Dent Relat Res 2019; 21 Suppl 1:8-14. [DOI: 10.1111/cid.12737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Vincent Milleret
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Philipp S. Lienemann
- Nobel Biocare AGProduct Development Regeneratives & Biologics Kloten Switzerland
| | - Sebastian Bauer
- Nobel Biocare AGMaterials Research & Surface Technologies Kloten Switzerland
| | - Martin Ehrbar
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital ZurichUniversity of Zurich Zurich Switzerland
| |
Collapse
|
8
|
Evaluation of Surface Characteristics and Hemocompatibility on the Oxygen Plasma-Modified Biomedical Titanium. METALS 2018. [DOI: 10.3390/met8070513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
TiO2 and its composites as promising biomaterials: a review. Biometals 2018; 31:147-159. [DOI: 10.1007/s10534-018-0078-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 01/04/2023]
|
10
|
Schieber R, Lasserre F, Hans M, Fernández-Yagüe M, Díaz-Ricart M, Escolar G, Ginebra MP, Mücklich F, Pegueroles M. Direct Laser Interference Patterning of CoCr Alloy Surfaces to Control Endothelial Cell and Platelet Response for Cardiovascular Applications. Adv Healthc Mater 2017; 6. [PMID: 28714577 DOI: 10.1002/adhm.201700327] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/02/2017] [Indexed: 11/09/2022]
Abstract
The main drawbacks of cardiovascular bare-metal stents (BMS) are in-stent restenosis and stent thrombosis as a result of an incomplete endothelialization after stent implantation. Nano- and microscale modification of implant surfaces is a strategy to recover the functionality of the artery by stimulating and guiding molecular and biological processes at the implant/tissue interface. In this study, cobalt-chromium (CoCr) alloy surfaces are modified via direct laser interference patterning (DLIP) in order to create linear patterning onto CoCr surfaces with different periodicities (≈3, 10, 20, and 32 µm) and depths (≈20 and 800 nm). Changes in surface topography, chemistry, and wettability are thoroughly characterized before and after modification. Human umbilical vein endothelial cells' adhesion and spreading are similar for all patterned and plain CoCr surfaces. Moreover, high-depth series induce cell elongation, alignment, and migration along the patterned lines. Platelet adhesion and aggregation decrease in all patterned surfaces compared to CoCr control, which is associated with changes in wettability and oxide layer characteristics. Cellular studies provide evidence of the potential of DLIP topographies to foster endothelialization without enhancement of platelet adhesion, which will be of high importance when designing new BMS in the future.
Collapse
Affiliation(s)
- Romain Schieber
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Technical University of Catalonia (UPC), EEBE; 08019, Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Centre for Research in NanoEngineering (CRNE); UPC, EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Chair of Functional Materials; Faculty of Natural Sciences and Technology; Saarland University; 66123 Saarbrücken Germany
| | - Federico Lasserre
- Chair of Functional Materials; Faculty of Natural Sciences and Technology; Saarland University; 66123 Saarbrücken Germany
| | - Michael Hans
- Chair of Functional Materials; Faculty of Natural Sciences and Technology; Saarland University; 66123 Saarbrücken Germany
| | - Marc Fernández-Yagüe
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Technical University of Catalonia (UPC), EEBE; 08019, Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Centre for Research in NanoEngineering (CRNE); UPC, EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Maribel Díaz-Ricart
- Hemotherapy-Hemostasis Department; Centre de Diagnòstic Biomèdic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Hospital Clínic Universitat de Barcelona; 08036 Barcelona Spain
| | - Ginés Escolar
- Hemotherapy-Hemostasis Department; Centre de Diagnòstic Biomèdic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Hospital Clínic Universitat de Barcelona; 08036 Barcelona Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Technical University of Catalonia (UPC), EEBE; 08019, Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Centre for Research in NanoEngineering (CRNE); UPC, EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC); 08028 Barcelona Spain
| | - Frank Mücklich
- Chair of Functional Materials; Faculty of Natural Sciences and Technology; Saarland University; 66123 Saarbrücken Germany
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Technical University of Catalonia (UPC), EEBE; 08019, Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Centre for Research in NanoEngineering (CRNE); UPC, EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| |
Collapse
|
11
|
Fernandes DJ, Marques RG, Elias CN. Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:164. [PMID: 28914397 DOI: 10.1007/s10856-017-5977-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this work was to investigate the influence of acid treatment on the surface properties and in vivo performance of titanium grade 5 (Ti6Al4V) alloy. Mini-implants with surface treatment were inserted into New Zealand rabbit tibia for 1, 4 and 8 weeks. SEM analysis showed intercommunicated micropores in acid treated samples. AFM showed micron and sub-micron roughness. The thickness of the titanium oxide layer increased with surface treatment, with a significant reduction of Al and V concentration. Acid treated implant removal torque was larger than without treatment. The implants/bone interface of acid treated implants showed dense adhered Ca/P particles with spreading osteoblasts after 4 weeks and newly formed bone trabeculae after 8 weeks. Analysis of rabbit blood that received treated implant showed lower Al and V contents at all times. Acid treatment improved surface morphology and mechanical stability, which allowed initial events of osseointegration, while Al-V ion release was reduced. GRAPHICAL ABTSRACT.
Collapse
Affiliation(s)
- Daniel J Fernandes
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 2290-270, Brazil.
| | - Ruy G Marques
- Laboratory of Experimental Surgery, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20561-030, Brazil
| | - Carlos N Elias
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 2290-270, Brazil
| |
Collapse
|
12
|
Huang Q, Yang Y, Zheng D, Song R, Zhang Y, Jiang P, Vogler EA, Lin C. Effect of construction of TiO 2 nanotubes on platelet behaviors: Structure-property relationships. Acta Biomater 2017; 51:505-512. [PMID: 28093367 DOI: 10.1016/j.actbio.2017.01.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/27/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Blood compatibility of TiO2 nanotubes (TNTs) has been assessed in rabbit platelet-rich plasma (PRP), which combines activation of both blood plasma coagulation and platelets. We find that (i) amorphous TiO2 nanotubes (TNTs) with relatively larger outer diameters led to reduced platelet adhesion/activation, (ii) TNTs with relatively smaller outer diameters in a predominately rutile phase also inhibited platelet adhesion and activation, and (iii) a pervasive fibrin network formed on larger outer diameter TNTs in a predominately anatase phase. Thus, this study suggests that combined effect of crystalline phase and surface chemistry controls blood-contact behavior of TNTs. A more comprehensive mechanism is proposed for understanding hemocompatibility of TiO2 which might prove helpful as a guide to prospective design of TiO2-based biomaterials. STATEMENT OF SIGNIFICANCE To realize optimal design and construction of biomaterials with desired properties for blood contact materials, a comprehensive understanding of structure-property relationships is required. In the existing literature, TiO2 nanotube has been reported to be a good candidate for biomedical applications. However, it is noticeable that the blood compatibility of TiO2 nanotubes (TNTs) remains obscure or even inconsistent in the previously published works. The inconsistency could derive from different research protocols, material properties or blood sources. Thus, a thorough investigation of the effect of surface properties on blood compatibility is crucial to the development of titanium based materials. In this paper, we explored the effect of surface properties on the response of platelet-rich plasma, especially surface morphology, chemistry, wettability and crystalline phase. The results indicated that crystalline phase was a dominant factor in platelet behaviors. Reduced adhesion and activation of platelets were observed on amorphous and rutile dominated TNTs, whereas anatase dominated TNTs activated the formation of fibrin network. We further proposed a hypothetical mechanism for better understanding of how surface properties affect the response of platelet-rich plasma. Therefore, this study expands the fundamental understanding of the structure-property relationships of titanium based materials.
Collapse
Affiliation(s)
- Qiaoling Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Research Institute for Biomimetics and Soft Matter, and Department of Physics, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yun Yang
- Beijing Medical Implant Engineering Research Center, Beijing 100082, China; Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing 100082, China
| | - Dajiang Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ran Song
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanmei Zhang
- Beijing Medical Implant Engineering Research Center, Beijing 100082, China; Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing 100082, China
| | - Pinliang Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Erwin A Vogler
- Department of Materials Science and Engineering and Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Changjian Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Research Institute for Biomimetics and Soft Matter, and Department of Physics, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China; Beijing Medical Implant Engineering Research Center, Beijing 100082, China; Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing 100082, China.
| |
Collapse
|
13
|
Influence of the Electrolyte Concentration on the Smooth TiO2 Anodic Coatings on Ti-6Al-4V. COATINGS 2017. [DOI: 10.3390/coatings7030039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:523-529. [DOI: 10.1016/j.msec.2016.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022]
|
15
|
Abstract
A hydroxyapatite (HA)-titania (TiO2) hybrid coating is developed to improve the biocompatibility of titanium (Ti) implants. The HA predeposited layer on Ti via electron beam (e-beam) evaporation is subsequently treated by micro-arc oxidation (MAO) to produce an HA-TiO2 hybrid layer on Ti. The e-beam-deposited HA layer has a thickness of ≈1 μm and was highly dense prior to MAO. By means of MAO treatment, a rough and porous TiO2 layer is formed beneath the HA layer with a simultaneous local dissolution of the HA layer. Due to the HA precoating, high concentrations of Ca and P are preserved on the coating surface. The osteoblast-like cells on the hybrid coating layer grow and spread favorably. The cell proliferation rate on the hybrid coatings is not much different from that on pure Ti or simple MAO-treated Ti. However, the alkaline phosphatase (ALP) activity of the cells is significantly higher ( p < 0.05) on the HA-TiO2 hybrid coatings than on either the pure Ti or the simple MAO-treated specimen, suggesting that the cellular activity on the hybrid coatings is improved.
Collapse
Affiliation(s)
- Su-Hee Lee
- School of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Korea
| | | | | | | | | |
Collapse
|
16
|
Corrosion Resistance and Blood Compatibility of AZ31B Mg Alloy with Anodic Oxidation/TiO<sub>2</sub> Composite Film. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2015. [DOI: 10.4028/www.scientific.net/jbbbe.23.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anodic oxidation/TiO2 composite film was prepared on the surface of AZ31B Mg alloy by DC magnetron sputtering. The corrosion resistance and blood compatibility of the film were systematically studied by electrochemical, dynamic clotting time and platelet adhesion test. The results shows that the corrosion current of AZ31B Mg alloy was 6.409×10-8A/cm2 after anodic oxidation treatment, which has decreased 4 orders of magnitude compared to the untreated samples and the corrosion resistance is improved greatly. The clotting time of anodic oxidation/TiO2 film is about 53 min, which has increased 1.3 times compared to anodic oxidation film (40min). Platelets adhesion to anodic oxidation/TiO2 film are less than the one adhesion to anodic oxidation film, and there are no pseudopodia and aggregation, which indicate that the blood compatibility of anodic oxidation/TiO2 film is better than anodic oxidation film.
Collapse
|
17
|
Qiu KJ, Liu Y, Zhou FY, Wang BL, Li L, Zheng YF, Liu YH. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications. Acta Biomater 2015; 15:254-65. [PMID: 25595472 DOI: 10.1016/j.actbio.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 12/30/2022]
Abstract
In this study, the microstructure, mechanical properties, castability, electrochemical behaviors, cytotoxicity and hemocompatibility of Ti-Bi alloys with pure Ti as control were systematically investigated to assess their potential applications in the dental field. The experimental results showed that, except for the Ti-20Bi alloy, the microstructure of all other Ti-Bi alloys exhibit single α-Ti phase, while Ti-20Bi alloy is consisted of mainly α-Ti phase and a small amount of BiTi2 and BiTi3 phases. The tensile strength, hardness and wear resistance of Ti-Bi alloys were demonstrated to be improved monotonically with the increase of Bi content. The castability test showed that Ti-2Bi alloy increased the castability of pure Ti by 11.7%. The studied Ti-Bi alloys showed better corrosion resistance than pure Ti in both AS (artificial saliva) and ASFL (AS containing 0.2% NaF and 0.3% lactic acid) solutions. The concentrations of both Ti ion and Bi ion released from Ti-Bi alloys are extremely low in AS, ASF (AS containing 0.2% NaF) and ASL (AS containing 0.3% lactic acid) solutions. However, in ASFL solution, a large number of Ti and Bi ions are released. In addition, Ti-Bi alloys produced no significant deleterious effect to L929 cells and MG63 cells, similar to pure Ti, indicating a good in vitro biocompatibility. Besides, both L929 and MG63 cells perform excellent cell adhesion ability on Ti-Bi alloys. The hemolysis test exhibited that Ti-Bi alloys have an ultra-low hemolysis percentage below 1% and are considered nonhemolytic. To sum up, the Ti-2Bi alloy exhibits the optimal comprehensive performance and has great potential for dental applications.
Collapse
Affiliation(s)
- K J Qiu
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Y Liu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - F Y Zhou
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
| | - B L Wang
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
| | - L Li
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Y F Zheng
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Y H Liu
- General Dental Department, School of Stomatology, Peking University, Beijing 100081, China
| |
Collapse
|
18
|
Evaluation of the Haemocompatibility of TiO2 Coatings Obtained by Anodic Oxidation of Ti-6Al-4V. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.mspro.2015.04.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Kociubczyk AI, Vera ML, Schvezov CE, Heredia E, Ares AE. TiO2 Coatings in Alkaline Electrolytes Using Anodic Oxidation Technique. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.mspro.2015.04.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids Surf B Biointerfaces 2015; 125:134-41. [DOI: 10.1016/j.colsurfb.2014.11.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/05/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022]
|
21
|
Research of electrosurgical ablation with antiadhesive functionalization on thermal and histopathological effects of brain tissues in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182657. [PMID: 24967336 PMCID: PMC4055086 DOI: 10.1155/2014/182657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 11/17/2022]
Abstract
Thermal injury and tissue sticking are two major concerns in the electrosurgery. In the present study, the effect of lateral thermal injury caused by different electrosurgical electrodes on wound healing was investigated. An electrosurgical unit equipped with untreated (SS) and titanium oxide layer-coated (TiO2-coated) stainless steel needle-type electrodes was used to create lesions on the rat brain tissue. TiO2 layers were produced by radiofrequency plasma and magnetron sputtering in the form of amorphous (TO-SS-1), anatase (TO-SS-2), and rutile (TO-SS-3) phase. Animals were sacrificed for evaluations at 0, 2, 7, and 28 days postoperatively. TO-SS-3 electrodes generated lower levels of sticking tissue, and the thermographs showed that the recorded highest temperature in brain tissue from the TO-SS-3 electrode was significantly lower than in the SS electrode. The total injury area of brain tissue caused by TO-SS-1 and TO-SS-3 electrodes was significantly lower than that caused by SS electrodes at each time point. The results of the present study reveal that the plating of electrodes with a TiO2 film with rutile phases is an efficient method for improving the performance of electrosurgical units and should benefit wound healing.
Collapse
|
22
|
Chhatri A, Bajpai J, Bajpai AK. Designing polysaccharide-based antibacterial biomaterials for wound healing applications. BIOMATTER 2014; 1:189-97. [PMID: 23507748 PMCID: PMC3549890 DOI: 10.4161/biom.19005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, the development and characterization of novel polymer blends based on chitosan-poly (vinyl alcohol) and physically cross-linked by freeze-thaw method for possible use in a variety of biomedical application is reported. The present investigation deals with designing savlon-loaded blend hydrogels (coined as cryogels) of poly (vinyl alcohol) (PVA) and chitosan by repeated freeze-thaw method and their characterization by SEM and FTIR techniques. The FTIR spectra clearly reveal that savlon-loaded chitosan and PVA blends are bonded together through hydrogen bonding. The SEM analysis suggests that cryogels show a well-defined porous morphology. The prepared cryogels were also investigated for swelling and deswelling behaviors. The results reveal that both the swelling and deswelling behaviors greatly depend on factors like chemical composition of the cryogels, number of freeze-thaw cycles, pH and temperature of the swelling bath. The savlon-loaded blends were also investigated for their in vitro blood compatibility and antibacterial activity.
Collapse
Affiliation(s)
- Amita Chhatri
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur, Madhya Pradesh, India
| | | | | |
Collapse
|
23
|
Kopaczyńska M, Sobieszczańska B, Ulatowska-Jarża A, Hołowacz I, Buzalewicz I, Wasyluk Ł, Tofail SA, Biały D, Wawrzyńska M, Podbielska H. Photoactivated titania-based nanomaterials for potential application as cardiovascular stent coatings. Biocybern Biomed Eng 2014. [DOI: 10.1016/j.bbe.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Mohan C, Chennazhi K, Menon D. In vitro hemocompatibility and vascular endothelial cell functionality on titania nanostructures under static and dynamic conditions for improved coronary stenting applications. Acta Biomater 2013; 9:9568-77. [PMID: 23973390 DOI: 10.1016/j.actbio.2013.08.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/24/2013] [Accepted: 08/14/2013] [Indexed: 02/03/2023]
Abstract
The usefulness of nanoscale topography in improving vascular response in vitro was established previously on hydrothermally modified titanium surfaces. To propose this strategy of surface modification for translation onto clinically used metallic stents, it is imperative that the surface should be also hemocompatible: an essential attribute for any blood-contacting device. The present in vitro study focuses on a detailed hemocompatibility evaluation of titania nanostructures created through an alkaline hydrothermal route on metallic Ti stent prototypes. Direct interactions of TiO2 nanocues of various morphologies with whole blood were studied under static conditions as well as using an in vitro circulation model mimicking arterial flow, with respect to a polished Ti control. Nanomodified stent surfaces upon contact with human blood showed negligible hemolysis under constant shear and static conditions. Coagulation profile testing indicated that surface roughness of nanomodified stents induced no alterations in the normal clotting times, with insignificant thrombus formation and minimal inflammatory reaction. Endothelialized nanomodified Ti surfaces were found to inhibit both activation as well as aggregation of platelets compared with the control surface, with the endothelium formed on the nanosurfaces having an increased expression of anti-thrombogenic genes. Such a nanotextured Ti surface, which is anti-thrombogenic and promotes endothelialization, would be a cost-effective alternative to drug-eluting stents or polymer-coated stents for overcoming in-stent restenosis.
Collapse
|
25
|
van Oeveren W. Obstacles in haemocompatibility testing. SCIENTIFICA 2013; 2013:392584. [PMID: 24278774 PMCID: PMC3820147 DOI: 10.1155/2013/392584] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
ISO 10993-4 is an international standard describing the methods of testing of medical devices for interactions with blood for regulatory purpose. The complexity of blood responses to biomaterial surfaces and the variability of blood functions in different individuals and species pose difficulties in standardisation. Moreover, in vivo or in vitro testing, as well as the clinical relevance of certain findings, is still matter of debate. This review deals with the major remaining problems, including a brief explanation of surface interactions with blood, the current ISO 10993 requirements for testing, and the role of in vitro test models. The literature is reviewed on anticoagulation, shear rate, blood-air interfaces, incubation time, and the importance of evaluation of the surface area after blood contact. Two test categories deserve further attention: complement and platelet function, including the effects on platelets from adhesion proteins, venipuncture, and animal derived- blood. The material properties, hydrophilicity, and roughness, as well as reference materials, are discussed. Finally this review calls for completing the acceptance criteria in the ISO standard based on a panel of test results.
Collapse
Affiliation(s)
- W. van Oeveren
- HaemoScan and Department of Cardiothoracic Surgery, UMCG Groningen, The Netherlands
| |
Collapse
|
26
|
Tseng YH, Sun DS, Wu WS, Chan H, Syue MS, Ho HC, Chang HH. Antibacterial performance of nanoscaled visible-light responsive platinum-containing titania photocatalyst in vitro and in vivo. Biochim Biophys Acta Gen Subj 2013; 1830:3787-95. [PMID: 23542693 DOI: 10.1016/j.bbagen.2013.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/01/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Traditional antibacterial photocatalysts are primarily induced by ultraviolet light to elicit antibacterial reactive oxygen species. New generation visible-light responsive photocatalysts were discovered, offering greater opportunity to use photocatalysts as disinfectants in our living environment. Recently, we found that visible-light responsive platinum-containing titania (TiO2-Pt) exerted high performance antibacterial property against soil-borne pathogens even in soil highly contaminated water. However, its physical and photocatalytic properties, and the application in vivo have not been well-characterized. METHODS Transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible absorption spectrum and the removal rate of nitrogen oxides were therefore analyzed. The antibacterial performance under in vitro and in vivo conditions was evaluated. RESULTS The apparent quantum efficiency for visible light illuminated TiO2-Pt is relatively higher than several other titania photocatalysts. The killing effect achieved approximately 2 log reductions of pathogenic bacteria in vitro. Illumination of injected TiO2-Pt successfully ameliorated the subcutaneous infection in mice. CONCLUSIONS This is the first demonstration of in vivo antibacterial use of TiO2-Pt nanoparticles. When compared to nanoparticles of some other visible-light responsive photocatalysts, TiO2-Pt nanoparticles induced less adverse effects such as exacerbated platelet clearance and hepatic cytotoxicity in vivo. GENERAL SIGNIFICANCE These findings suggest that the TiO2-Pt may have potential application on the development of an antibacterial material in both in vitro and in vivo settings.
Collapse
Affiliation(s)
- Yao-Hsuan Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Wan G, Lv B, Jin G, Maitz MF, Zhou J, Huang N. Direct correlation of electrochemical behaviors with anti-thrombogenicity of semiconducting titanium oxide films. J Biomater Appl 2013; 28:719-28. [PMID: 23413233 DOI: 10.1177/0885328213476911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biomaterials-associated thrombosis is dependent critically upon electrochemical response of fibrinogen on material surface. The relationship between the response and anti-thrombogenicity of biomaterials is not well-established. Titanium oxide appears to have good anti-thrombogenicity and little is known about its underlying essential chemistry. We correlate their anti-thrombogenicity directly to electrochemical behaviors in fibrinogen containing buffer solution. High degree of inherent n-type doping was noted to contribute the impedance preventing charge transfer from fibrinogen into film (namely its activation) and consequently reduced degree of anti-thrombogenicity. The impedance was the result of high donor carrier density as well as negative flat band potential.
Collapse
Affiliation(s)
- Guojiang Wan
- 1Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
28
|
Gupta S, Reviakine I. Platelet Activation Profiles on TiO2: Effect of Ca2+Binding to the Surface. Biointerphases 2012; 7:28. [DOI: 10.1007/s13758-012-0028-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/15/2012] [Indexed: 10/28/2022] Open
|
29
|
Abstract
This review outlines the current understanding of the interactions of titanium and its alloys with blood components, and the ways in which surface modification techniques can be used to alter the surface physicochemical and topographical features that determine blood-material interactions. Surface modification of the spontaneously formed titanium oxide surface layer is a highly attractive means of improving haemocompatibility without forgoing the advantageous mechanical and physical properties of titanium and its alloys. A number of surface modification techniques and treatment processes are discussed in the context of enhancing the haemocompatibility of titanium and its alloys, with a view to optimising the clinical efficacy of blood-contacting devices and materials.
Collapse
|
30
|
Improved thrombogenicity on oxygen etched Ti6Al4V surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Visible light–responsive core-shell structured In2O3@CaIn2O4 photocatalyst with superior bactericidal properties and biocompatibility. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:609-17. [DOI: 10.1016/j.nano.2011.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 09/12/2011] [Accepted: 09/25/2011] [Indexed: 11/18/2022]
|
32
|
Elvira G, Moreno B, Valle ID, Garcia-Sanz JA, Canillas M, Chinarro E, Jurado JR, Silva A. Targeting neural stem cells with titanium dioxide nanoparticles coupled to specific monoclonal antibodies. J Biomater Appl 2011; 26:1069-89. [PMID: 21586599 DOI: 10.1177/0885328210393294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aiming to characterize the use of biomaterials in cancer therapy, we took advantage of the n-type semiconductor properties, which upon irradiation excite their electrons into the conduction band to induce photoelectrochemical reactions generating oxygen reactive species (ROS). Indeed, photoactivated TiO(2) nanoparticles have been shown to kill in vitro either bacteria or tumor cells in culture following UV irradiation, as a consequence of the ROS levels generated; the killing was highly effective although devoid of specificity. In this report, we have directed the TiO(2) nanoparticles to particular targets by coupling them to the monoclonal antibody (mAb) Nilo1, recognizing a surface antigen in neural stem cells within a cell culture, to explore the possibility of making this process specific. TiO(2) nanoparticles generated with particular rutile/anatase ratios were coupled to Nilo1 antibody and the complexes formed were highly stable. The coupled antibody retained the ability to identify neural stem cells and upon UV irradiation, the TiO(2) nanoparticles were activated, inducing the selective photokilling of the antibody-targeted cells. Thus, these data indicate that antibody-TiO(2) complexes could be used to specifically remove target cell subpopulations, as demonstrated with neural stem cells. The possible applications in cancer therapy are discussed.
Collapse
Affiliation(s)
- Gema Elvira
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hyde GK, Stewart SM, Scarel G, Parsons GN, Shih CC, Shih CM, Lin SJ, Su YY, Monteiro-Riviere NA, Narayan RJ. Atomic layer deposition of titanium dioxide on cellulose acetate for enhanced hemostasis. Biotechnol J 2011; 6:213-23. [PMID: 21298806 DOI: 10.1002/biot.201000342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TiO₂ films may be used to alter the wettability and hemocompatibility of cellulose materials. In this study, pure and stoichiometric TiO₂ films were grown using atomic layer deposition on both silicon and cellulose substrates. The films were grown with uniform thicknesses and with a growth rate in agreement with literature results. The TiO₂ films were shown to profoundly alter the water contact angle values of cellulose in a manner dependent upon processing characteristics. Higher amounts of protein adsorption indicated by blurry areas on images generated by scanning electron microscopy were noted on TiO₂ -coated cellulose acetate than on uncoated cellulose acetate. These results suggest that atomic layer deposition is an appropriate method for improving the biological properties of hemostatic agents and other blood-contacting biomaterials.
Collapse
Affiliation(s)
- G Kevin Hyde
- Department of Chemical and Bimolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Single-Crystal Silicon Carbide: A Biocompatible and Hemocompatible Semiconductor for Advanced Biomedical Applications. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/msf.679-680.824] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline silicon carbide (SiC) and silicon (Si) biocompatibility was evaluated in vitro by directly culturing three skin and connective tissue cell lines, two immortalized neural cell lines, and platelet-rich plasma (PRP) on these semiconducting substrates. The in vivo biocompatibility was then evaluated via implantation of 3C-SiC and Si shanks into a C57/BL6 wild type mouse. The in vivo results, while preliminary, were outstanding with Si being almost completely enveloped with activated microglia and astrocytes, indicating a severe immune system response, while the 3C-SiC film was virtually untouched. The in vitro experiments were performed specifically for the three adopted SiC polytypes, namely 3C-, 4H- and 6H-SiC, and the results were compared to those obtained for Si crystals. Cell proliferation and adhesion quality were studied using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and fluorescent microscopy. The neural cells were studied via atomic force microscopy (AFM) which was used to quantify filopodia and lamellipodia extensions on the surface of the tested materials. Fluorescent microscopy was used to assess platelet adhesion to the semiconductor surfaces where significantly lower values of platelet adhesion to 3C-SiC was observed compared to Si. The reported results show good indicators that SiC is indeed a more biocompatible substrate than Si. While there were some differences among the degree of biocompatibility of the various SiC polytypes tested, SiC appears to be a highly biocompatible material in vitro that is also somewhat hemocompatible. This extremely intriguing result appears to put SiC into a unique class of materials that is both bio- and hemo-compatible and is, to the best of our knowledge, the only semiconductor with this property.
Collapse
|
35
|
Chhatri A, Bajpai J, Bajpai A, Sandhu S, Jain N, Biswas J. Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.08.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Lu P, Cao L, Liu Y, Xu X, Wu X. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B Appl Biomater 2010; 96:101-9. [DOI: 10.1002/jbm.b.31744] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Gertler G, Fleminger G, Rapaport H. Characterizing the adsorption of peptides to TiO2 in aqueous solutions by liquid chromatography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6457-6463. [PMID: 20350003 DOI: 10.1021/la903490v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The interactions between titanium oxide (TiO(2)) and flexible peptides, decorated by amine, carboxyl, and phosphoserine functional groups, were characterized using analytical liquid chromatography with various loading and eluting solutions. This approach enabled discernment of the type of intermolecular interactions generated between the peptides and the metal oxide surfaces in addition to unraveling more subtle effects, specific ions, and oxide phase may have on the adsorption. The peptide presenting Lys residues adsorbed to the oxide surface in the presence of Tris buffer and eluted under conditions that indicated its binding via electrostatic interactions at physiological pH values. Upon adsorption to the oxide in the presence of phosphate buffer, the same peptide exhibited stronger electrostatic interactions with the surface, mediated by the buffer phosphate ions. In Tris-buffered saline (TBS), pH 7.4, as the adsorption medium, the peptide with the phosphoserine residues exhibited affinity indicative of coordinative binding to the titanium oxide, whereas a similar peptide decorated by carboxylate groups failed to adsorb. On the basis of differences in the interactions of these peptides with the TiO(2), the efficient separation of the two peptides was demonstrated. A basic amphiphilic peptide, composed mostly of Lys and Leu residues, was found to strongly adsorb to TiO(2) while in helical conformation only, demonstrating the strong impact the secondary structure may have on adsorption to the surface. The methodology presented in this study allows the elucidation of in situ binding mechanism and relative strengths to titanium oxide surfaces at conditions which resemble biologically relevant environments.
Collapse
Affiliation(s)
- Golan Gertler
- Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
38
|
Bajpai AK, Saini R. Designing of macroporous biocompatible cryogels of PVA-haemoglobin and their water sorption study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2063-2074. [PMID: 19455407 DOI: 10.1007/s10856-009-3777-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/05/2009] [Indexed: 05/27/2023]
Abstract
Macroporous polymeric materials are three-dimensional porous architectures having enormous utility in the areas of biomedical, biotechnological and separation sciences. Thus realizing the crucial role of macroporous polymeric materials in tissue engineering and allied fields the present paper discusses synthesis, characterization, and blood compatibility study of macroporous cryogels of PVA and haemoglobin. Biocompatible spongy and porous hydrogels of polyvinyl alcohol-haemoglobin have been synthesized by repeated freezing-thawing method and characterized by Infrared (FTIR), and ESEM techniques. The FTIR analysis of prepared cryogels indicated that haemoglobin was introduced into the cryogel possibly via hydrogen bonds formed amongst hydroxyl groups and amino groups present in PVA and haemoglobin, respectively. The 'cryogels' were evaluated for their water uptake potentials and influence of various factors such as chemical architecture of the spongy hydrogels, pH and temperature of the swelling bath were investigated on the degree of water sorption by the cryogels. The hydrogels were also swollen in salt solutions and various simulated biological fluids. The effect of drying temperature on its water sorption capacity was also studied. The biocompatibility of the prepared cryogels was judged by in vitro methods of blood-clot formation, percent haemolysis and protein (BSA) adsorption.
Collapse
Affiliation(s)
- A K Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur, MP 482 001, India.
| | | |
Collapse
|
39
|
Notara M, Scotchford CA, Grant DM, Weston N, Roberts GAF. Cytocompatibility and hemocompatibility of a novel chitosan-alginate gel system. J Biomed Mater Res A 2009; 89:854-64. [DOI: 10.1002/jbm.a.32027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Nishizawa K, Nagano S, Seki T. Micropatterning of titanium oxide film via phototactic mass transport. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b916494d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Wang GX, Shen Y, Zhang H, Quan XJ, Yu QS. Influence of surface microroughness by plasma deposition and chemical erosion followed by TiO2 coating upon anticoagulation, hydrophilicity, and corrosion resistance of NiTi alloy stent. J Biomed Mater Res A 2008; 85:1096-102. [PMID: 17941010 DOI: 10.1002/jbm.a.31364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two different surface modification techniques were used to change the surface morphology and roughness of stents at the micrometer level, and eventually improve their surface adhesion properties with respect to endothelial cells. One was chemical erosion followed by sol-gel TiO(2) coating, and the other was low temperature gas plasma deposition. After surface modification, the biocompatibility including the anticoagulation properties, hydrophilicity, and corrosion resistance of these stents was evaluated. It was found that both techniques could change the surface morphology of the stents with microroughness. In comparison with the control, the treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation properties. However, the corrosion properties of the stents were not improved significantly.
Collapse
Affiliation(s)
- Gui-Xue Wang
- Bioengineering College, Chongqing University, Chongqing 400044, China.
| | | | | | | | | |
Collapse
|
42
|
Popescu S, Demetrescu I, Sarantopoulos C, Gleizes AN, Iordachescu D. The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:2075-83. [PMID: 17562134 DOI: 10.1007/s10856-007-3133-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 07/28/2006] [Indexed: 05/15/2023]
Abstract
This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO(2) by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5.10(4) min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO(2) exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method.
Collapse
Affiliation(s)
- Simona Popescu
- General Chemistry Department, Faculty of Applied Chemistry and Material Science, UPB, str. Polizu, nr. 1-7, cod 011061, Bucharest, Romania
| | | | | | | | | |
Collapse
|
43
|
Werner C, Maitz MF, Sperling C. Current strategies towards hemocompatible coatings. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b703416b] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Maitz MF, Shevchenko N. Plasma-immersion ion-implanted nitinol surface with depressed nickel concentration for implants in blood. J Biomed Mater Res A 2005; 76:356-65. [PMID: 16270338 DOI: 10.1002/jbm.a.30526] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ion implantation into nitinol had been shown previously to decrease the surface nickel concentration of this alloy and produce a titanium oxide layer. Nothing is known yet about the blood compatibility of this surface and the suitability for implants in the blood vessels, like vascular stents. Nickel depletion of superelastic nitinol was obtained by oxygen or helium plasma-immersion ion implantation. The latter leads to the formation of a nickel-poor titanium-oxide surface with a nanoporous structure, which was used for comparison. Fibrinogen adsorption and conformation changes, blood platelet adhesion, and contact activation of the blood clotting cascade have been checked as in vitro parameters of blood compatibility; metabolic activity and release of cytokines IL-6 and IL-8 from cultured endothelial cells on these surfaces give information about the reaction of the blood vessel wall. The oxygen-ion-implanted nitinol surface adsorbed less fibrinogen on its surface and activated the contact system less than the untreated nitinol surface, but conformation changes of fibrinogen were higher on the oxygen-implanted nitinol. No difference between initial and oxygen-implanted nitinol was found for the platelet adherence, endothelial cell activity, or cytokine release. The nanoporous, helium-implanted nitinol behaved worse than the initial one in most aspects. Oxygen-ion implantation is seen as a useful method to decrease the nickel concentration in the surface of nitinol for cardiovascular applications.
Collapse
Affiliation(s)
- Manfred F Maitz
- Institut für Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, PF 51 01 19, 01314 Dresden, Germany.
| | | |
Collapse
|